Ya-Hao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/451601/publications.pdf

Version: 2024-02-01

477173 567144 32 825 15 29 citations h-index g-index papers 34 34 34 1008 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inâ€situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angewandte Chemie - International Edition, 2019, 58, 16062-16066.	7.2	135
2	Revealing the Role of Interfacial Properties on Catalytic Behaviors by <i>in Situ</i> Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 10339-10346.	6.6	127
3	Multichannel Conductance of Folded Singleâ€Molecule Wires Aided by Throughâ€Space Conjugation. Angewandte Chemie - International Edition, 2015, 54, 4231-4235.	7.2	92
4	Probing Interfacial Electronic and Catalytic Properties on Wellâ€Defined Surfaces by Using Inâ€Situ Raman Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 11257-11261.	7.2	60
5	Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules. Journal of Physical Chemistry Letters, 2021, 12, 758-763.	2.1	33
6	Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction. Electrochimica Acta, 2014, 123, 205-210.	2.6	31
7	Probing Interfacial Electronic Effects on Singleâ€Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angewandte Chemie - International Edition, 2021, 60, 15452-15458.	7.2	31
8	In situ electrochemical surface-enhanced Raman spectroscopy study of CO electrooxidation on PtFe nanocatalysts. Electrochemistry Communications, 2017, 81, 38-42.	2.3	30
9	Tunneling Decay Constant of Alkanedicarboxylic Acids: Different Dependence on the Metal Electrodes between Air and Electrochemistry. Journal of Physical Chemistry C, 2014, 118, 18756-18761.	1.5	26
10	Inâ€situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angewandte Chemie, 2019, 131, 16208-16212.	1.6	26
11	Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces. Analyst, The, 2016, 141, 3731-3736.	1.7	23
12	Single-Molecule Sensing of Interfacial Acid–Base Chemistry. Journal of Physical Chemistry Letters, 2020, 11, 10023-10028.	2.1	20
13	Probing Interfacial Electronic and Catalytic Properties on Wellâ€Defined Surfaces by Using Inâ€Situ Raman Spectroscopy. Angewandte Chemie, 2018, 130, 11427-11431.	1.6	19
14	Conductance of alkyl-based molecules with one, two and three chains measured by electrochemical STM break junction. Electrochemistry Communications, 2014, 45, 83-86.	2.3	18
15	Modulating electron transport through single-molecule junctions by heteroatom substitution. Journal of Materials Chemistry C, 2020, 8, 6826-6831.	2.7	15
16	z-Piezo Pulse-Modulated STM Break Junction: Toward Single-Molecule Rectifiers with Dissimilar Metal Electrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8656-8663.	4.0	15
17	Improving Gating Efficiency of Electron Transport through Redoxâ€Active Molecular Junctions with Conjugated Chains. ChemElectroChem, 2020, 7, 1337-1341.	1.7	13
18	Revealing Supramolecular Interactions and Electron Transport in Single Molecular Junctions of Cucurbit[<i>n</i>]uril. Advanced Electronic Materials, 2021, 7, 2100399.	2.6	10

#	Article	IF	CITATIONS
19	Single-molecule anisotropic magnetoresistance at room temperature: Influence of molecular structure. Electrochimica Acta, 2021, 389, 138760.	2.6	10
20	Visualizing an Electrochemically Induced Radical Cation of Bipyridine at Au(111)/Ionic Liquid Interfaces toward a Single-Molecule Switch. Analytical Chemistry, 2022, 94, 1823-1830.	3.2	9
21	Quantitative Detection of Creatinine in Human Serum by SERS with Evaporation-Induced Optimal Hotspots on Au Nanocubes. ACS Applied Nano Materials, 2022, 5, 4841-4847.	2.4	9
22	In-situ monitoring of redox processes of viologen at Au(hkl) single-crystal electrodes using electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy. Electrochemistry Communications, 2016, 72, 131-134.	2.3	8
23	Single-molecule conductance with nitrile and amino contacts with Ag or Cu electrodes. Electrochimica Acta, 2015, 174, 340-344.	2.6	7
24	Single-molecule conductance of dipyridines binding to Ag electrodes measured by electrochemical scanning tunneling microscopy break junction. Nanoscale Research Letters, 2014, 9, 77.	3.1	6
25	The binding sites of carboxylic acid group contacting to Cu electrode. Electrochemistry Communications, 2015, 59, 48-51.	2.3	6
26	Electrochemically activated carbon–halogen bond cleavage and C–C coupling monitored by <i>in situ</i> shell-isolated nanoparticle-enhanced Raman spectroscopy. Analyst, The, 2022, 147, 1341-1347.	1.7	6
27	In Situ Raman Monitoring of Potential-Dependent Adlayer Structures on the Au(111)/Ionic Liquid Interface. Langmuir, 2022, 38, 6209-6216.	1.6	6
28	Influence of a Coordinated Metal Center on Charge Transport through a Series of Porphyrin Molecular Junctions. Journal of Physical Chemistry C, 2022, 126, 1168-1175.	1.5	4
29	Tuning the binding configurations of single-molecule junctions by molecular co-assembly. Chemical Communications, 2022, 58, 4962-4965.	2.2	3
30	Probing Interfacial Electronic Effects on Singleâ€Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angewandte Chemie, 2021, 133, 15580-15586.	1.6	1
31	Facile Synthesis of Uniform Mesoporous Nb2O5 Micro-Flowers for Enhancing Photodegradation of Methyl Orange. Materials, 2021, 14, 3783.	1.3	1
32	Substituent-mediated quantum interference toward a giant single-molecule conductance variation. Nanotechnology, 2022, 33, 095201.	1.3	1