
Zhefei Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515992/publications.pdf Version: 2024-02-01

ΖΗΕΕΕΙ ΡΛΝ

#	Article	IF	CITATIONS
1	Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 2018, 399, 274-286.	4.0	587
2	Advances and challenges in alkaline anion exchange membrane fuel cells. Progress in Energy and Combustion Science, 2018, 66, 141-175.	15.8	388
3	Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Materials, 2020, 27, 478-505.	9.5	221
4	Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy and Environmental Science, 2019, 12, 2030-2053.	15.6	163
5	Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles. Applied Energy, 2019, 240, 473-485.	5.1	153
6	Tin-based materials as versatile anodes for alkali (earth)-ion batteries. Journal of Power Sources, 2018, 395, 41-59.	4.0	98
7	Machine learning for advanced energy materials. Energy and AI, 2021, 3, 100049.	5.8	96
8	Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals. Journal of Power Sources, 2017, 365, 430-445.	4.0	94
9	Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications. Renewable and Sustainable Energy Reviews, 2018, 89, 168-183.	8.2	71
10	Modeling and Simulation of Flow Batteries. Advanced Energy Materials, 2020, 10, 2000758.	10.2	66
11	Carbon-free sustainable energy technology: Direct ammonia fuel cells. Journal of Power Sources, 2020, 476, 228454.	4.0	61
12	Polymer Electrolyte Membranes for Vanadium Redox Flow Batteries: Fundamentals and Applications. Progress in Energy and Combustion Science, 2021, 85, 100926.	15.8	61
13	Performance characteristics of a passive direct ethylene glycol fuel cell with hydrogen peroxide as oxidant. Applied Energy, 2019, 250, 846-854.	5.1	51
14	A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells. Applied Energy, 2020, 258, 114060.	5.1	45
15	Performance of a hybrid direct ethylene glycol fuel cell. International Journal of Energy Research, 2019, 43, 2583-2591.	2.2	42
16	Enhancing high-voltage performance of LiNi0.5Co0.2Mn0.3O2 cathode material via surface modification with lithium-conductive Li3Fe2(PO4)3. Journal of Alloys and Compounds, 2019, 773, 519-526.	2.8	32
17	Mathematical modeling of direct ethylene glycol fuel cells incorporating the effect of the competitive adsorption. Applied Thermal Engineering, 2019, 147, 1115-1124.	3.0	27
18	Flow Batteries: Modeling and Simulation of Flow Batteries (Adv. Energy Mater. 31/2020). Advanced Energy Materials, 2020, 10, 2070133.	10.2	26

Zhefei Pan

#	Article	IF	CITATIONS
19	A direct ethylene glycol fuel cell stack as air-independent power sources for underwater and outer space applications. Journal of Power Sources, 2019, 437, 226944.	4.0	25
20	Energizing Fuel Cells with an Electrically Rechargeable Liquid Fuel. Cell Reports Physical Science, 2020, 1, 100102.	2.8	18
21	Two-Dimensional Layered SnO ₂ Nanosheets for Ambient Ammonia Synthesis. ACS Applied Energy Materials, 2020, 3, 6735-6742.	2.5	16
22	Mathematical modeling of direct formate fuel cells incorporating the effect of ion migration. International Journal of Heat and Mass Transfer, 2021, 164, 120629.	2.5	14
23	Performance characteristics of a passive direct formate fuel cell. International Journal of Energy Research, 2019, 43, 7433.	2.2	11
24	lon Transport Characteristics in Membranes for Direct Formate Fuel Cells. Frontiers in Chemistry, 2020, 8, 765.	1.8	10
25	In-situ formation of bismuth nanoparticles on nickel foam for ambient ammonia synthesis via electrocatalytic nitrogen reduction. Journal of Alloys and Compounds, 2021, 875, 160006.	2.8	10
26	Water flooding behavior in flow cells for ammonia production via electrocatalytic nitrogen reduction. Fundamental Research, 2022, 2, 757-763.	1.6	10
27	Ultralow loading FeCoNi alloy nanoparticles decorated carbon mat for hydrogen peroxide reduction reaction and its application in direct ethylene glycol fuel cells. International Journal of Energy Research, 2022, 46, 13820-13831.	2.2	7
28	A discrete regenerative fuel cell mediated by ammonia for renewable energy conversion and storage. Applied Energy, 2022, 322, 119463.	5.1	7
29	Three-dimensional porous electrodes for direct formate fuel cells. Science China Technological Sciences, 2021, 64, 705-718.	2.0	4
30	Boosting electrocatalytic nitrogen reduction to ammonia in alkaline media. International Journal of Energy Research, 2021, 45, 19634-19644.	2.2	3