
Faming Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515876/publications.pdf Version: 2024-02-01

FAMING HUANG

#	Article	IF	CITATIONS
1	A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides, 2020, 17, 217-229.	2.7	278
2	Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena, 2020, 191, 104580.	2.2	263
3	Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Engineering Geology, 2017, 218, 173-186.	2.9	212
4	Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sensing, 2020, 12, 502.	1.8	181
5	Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides, 2020, 17, 2919-2930.	2.7	173
6	Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Engineering Geology, 2017, 223, 11-22.	2.9	164
7	Modelling of spatial variability of soil undrained shear strength by conditional random fields for slope reliability analysis. Applied Mathematical Modelling, 2018, 63, 374-389.	2.2	120
8	Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geoscience Frontiers, 2021, 12, 101249.	4.3	109
9	Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory. Environmental Earth Sciences, 2016, 75, 1.	1.3	83
10	Landslide susceptibility assessment in the Nantian area of China: a comparison of frequency ratio model and support vector machine. Geomatics, Natural Hazards and Risk, 2018, 9, 919-938.	2.0	81
11	Landslide Susceptibility Prediction Using Particle-Swarm-Optimized Multilayer Perceptron: Comparisons with Multilayer-Perceptron-Only, BP Neural Network, and Information Value Models. Applied Sciences (Switzerland), 2019, 9, 3664.	1.3	74
12	Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. Geoscience Frontiers, 2022, 13, 101317.	4.3	74
13	Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology, 2022, 408, 108236.	1.1	73
14	Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. Catena, 2021, 202, 105250.	2.2	69
15	Prediction of groundwater levels using evidence of chaos and support vector machine. Journal of Hydroinformatics, 2017, 19, 586-606.	1.1	67
16	Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Sensors, 2020, 20, 1576.	2.1	67
17	Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments. Landslides, 2021, 18, 3715-3731.	2.7	63
18	Stability Analysis of Hydrodynamic Pressure Landslides with Different Permeability Coefficients Affected by Reservoir Water Level Fluctuations and Rainstorms. Water (Switzerland), 2017, 9, 450.	1.2	55

Faming Huang

#	Article	IF	CITATIONS
19	Object-oriented change detection and damage assessment using high-resolution remote sensing images, Tangjiao Landslide, Three Gorges Reservoir, China. Environmental Earth Sciences, 2018, 77, 1.	1.3	55
20	Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine-Learning Models. ISPRS International Journal of Geo-Information, 2020, 9, 377.	1.4	44
21	Experimental study of the failure mode and mechanism of loess fill slopes induced by rainfall. Engineering Geology, 2021, 280, 105941.	2.9	43
22	Regional Rainfall Warning System for Landslides with Creep Deformation in Three Gorges using a Statistical Black Box Model. Scientific Reports, 2019, 9, 8962.	1.6	38
23	Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sensing, 2020, 12, 4134.	1.8	37
24	A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide. Scientific Reports, 2017, 7, 17171.	1.6	33
25	The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors. Bulletin of Engineering Geology and the Environment, 2022, 81, .	1.6	32
26	Experimental study on the disintegration of granite residual soil under the combined influence of wetting–drying cycles and acid rain. Geomatics, Natural Hazards and Risk, 2019, 10, 1912-1927.	2.0	29
27	Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Research, 2023, 123, 198-216.	3.0	29
28	Uncertainty of the Soil–Water Characteristic Curve and Its Effects on Slope Seepage and Stability Analysis under Conditions of Rainfall Using the Markov Chain Monte Carlo Method. Water (Switzerland), 2017, 9, 758.	1.2	27
29	Study on the creep behaviours and the improved Burgers model of a loess landslide considering matric suction. Natural Hazards, 2020, 103, 1479-1497.	1.6	26
30	Landslide Susceptibility Prediction Using Sparse Feature Extraction and Machine Learning Models Based on GIS and Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	21
31	Prediction of soil water retention curve using Bayesian updating from limited measurement data. Applied Mathematical Modelling, 2019, 76, 380-395.	2.2	17
32	SUSLE: a slope and seasonal rainfall-based RUSLE model for regional quantitative prediction of soil erosion. Bulletin of Engineering Geology and the Environment, 2020, 79, 5213-5228.	1.6	16
33	A Comparison Method for 3D Laser Point Clouds in Displacement Change Detection for Arch Dams. ISPRS International Journal of Geo-Information, 2021, 10, 184.	1.4	16
34	Experimental study of subsurface erosion in granitic under the conditions of different soil column angles and flow discharges. Bulletin of Engineering Geology and the Environment, 2019, 78, 5877-5888.	1.6	15
35	A bibliometric analysis of the landslide susceptibility research (1999–2021). Geocarto International, 2022, 37, 14309-14334.	1.7	13
36	Landslide susceptibility mapping by attentional factorization machines considering feature interactions. Geomatics, Natural Hazards and Risk, 2021, 12, 1837-1861.	2.0	12

Faming Huang

#	Article	IF	CITATIONS
37	Landslide susceptibility modeling based on remote sensing data and data mining techniques. Environmental Earth Sciences, 2022, 81, 1.	1.3	12
38	Regional Terrain Complexity Assessment Based on Principal Component Analysis and Geographic Information System: A Case of Jiangxi Province, China. ISPRS International Journal of Geo-Information, 2020, 9, 539.	1.4	11
39	Uncertainties of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Effects of Different Machine Learning Models. Frontiers in Earth Science, 2021, 9, .	0.8	8
40	基于ä½ç§»æ¯"æ¨j型的ä,‰å³j库区云é~³åŽį域内è•åĩ型滑åŧé™é›¨é⊄"è¦. Diqiu Kexue - Zhongguo Dizhi D Geosciences, 2020, 45, 672.)axue Xuel 0.1	bao/Earth Sc
41	基于çŶ色å³è∛度æ¨j型的区域滑åŧæ∙感性è⁻"ä»∙. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Eartł Geosciences, 2019, 44, 664.	n Science - 0.1	Journal of C
42	Landslide susceptibility prediction using an incremental learning Bayesian Network model considering the continuously updated landslide inventories. Bulletin of Engineering Geology and the Environment, 2022, 81, .	1.6	7
43	Influencing factor analysis and displacement prediction in reservoir landslides â^' a case study of Three Gorges Reservoir (China). Tehnicki Vjesnik, 2016, 23, .	0.3	5
44	基于时é—′åºå^—å^†è§£å'Œåﷺ•é‡ఱ٠沌æ¨j型的滑åᠨé~¶è·ƒå¼ë¼ҫ§»é¢"测. Diqiu Kexue - Zhongguo Dizł Geosciences, 2018, 43, 887.	1i Daxue X 0.1	uebao/Earth
45	Water pollution index evaluation of lake based on principal component analysis. IOP Conference Series: Earth and Environmental Science, 2019, 300, 032010.	0.2	4
46	Regional terrain complexity evaluation based on GIS and K-means clustering model: a case study of Ningdu County, China. IOP Conference Series: Earth and Environmental Science, 2019, 300, 022025.	0.2	1
47	Landslide Susceptibility Prediction Based on the Information Value-Logistic Regression Model and Geographic Information System. IOP Conference Series: Earth and Environmental Science, 2020, 570, 042049.	0.2	1
48	Uplift Performance of Plate Anchors in Cement-Stabilised Aeolian Sand. Frontiers in Earth Science, 2021, 9, .	0.8	1
49	An Analytical Conditional Random field Sampling Approach for Slope Reliability Analysis. , 2018, , .		0