Mikko A Juusola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-speed imaging of light-induced photoreceptor microsaccades in compound eyes. Communications Biology, 2022, 5, 203.	4.4	2
2	Binocular mirror–symmetric microsaccadic sampling enables <i>Drosophila</i> hyperacute 3D vision. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109717119.	7.1	8
3	Phototransduction Biophysics. , 2022, , 2758-2776.		0
4	Multiscale â€~whole-cell' models to study neural information processing – New insights from fly photoreceptor studies. Journal of Neuroscience Methods, 2021, 357, 109156.	2.5	2
5	Ca ²⁺ -Activated K ⁺ Channels Reduce Network Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information. Journal of Neuroscience, 2019, 39, 7132-7154.	3.6	7
6	How a fly photoreceptor samples light information in time. Journal of Physiology, 2017, 595, 5427-5437.	2.9	18
7	Modeling elucidates how refractory period can provide profound nonlinear gain control to graded potential neurons. Physiological Reports, 2017, 5, e13306.	1.7	6
8	A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal sampling provides a large dynamic range. Journal of Physiology, 2017, 595, 5439-5456.	2.9	11
9	Shining new light into the workings of photoreceptors and visual interneurons. Journal of Physiology, 2017, 595, 5425-5426.	2.9	0
10	Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. ELife, 2017, 6, .	6.0	55
11	Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine. Frontiers in Neural Circuits, 2016, 10, 19.	2.8	10
12	Random Photon Absorption Model Elucidates How Early Gain Control in Fly Photoreceptors Arises from Quantal Sampling. Frontiers in Computational Neuroscience, 2016, 10, 61.	2.1	6
13	Electrophysiological Method for Recording Intracellular Voltage Responses of Drosophila Photoreceptors and Interneurons to Light Stimuli In Vivo . Journal of Visualized Experiments, 2016, , .	0.3	12
14	Professor Matti Weckström (1959–2015). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 85-86.	1.6	0
15	Fly Photoreceptors Encode Phase Congruency. PLoS ONE, 2016, 11, e0157993.	2.5	6
16	Phototransduction in Drosophila. Current Opinion in Neurobiology, 2015, 34, 37-45.	4.2	104
17	Speed and Sensitivity of Phototransduction in <i>Drosophila</i> Depend on Degree of Saturation of Membrane Phospholipids. Journal of Neuroscience, 2015, 35, 2731-2746.	3.6	49

18 Phototransduction Biophysics. , 2015, , 2359-2376.

Мікко A Juusola

#	Article	IF	CITATIONS
19	Perceptual Color Map in Macaque Visual Area V4. Journal of Neuroscience, 2014, 34, 202-217.	3.6	42
20	Refractory Sampling Links Efficiency and Costs of Sensory Encoding to Stimulus Statistics. Journal of Neuroscience, 2014, 34, 7216-7237.	3.6	35
21	Phototransduction Biophysics. , 2013, , 1-20.		Ο
22	Multiple Spectral Inputs Improve Motion Discrimination in the <i>Drosophila</i> Visual System. Science, 2012, 336, 925-931.	12.6	107
23	Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors. Current Biology, 2012, 22, 1371-1380.	3.9	79
24	Signal coding in cockroach photoreceptors is tuned to dim environments. Journal of Neurophysiology, 2012, 108, 2641-2652.	1.8	30
25	Reverse Engineering Gain Adaptation in Sensory Systems. , 2012, , .		2
26	Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4224-4229.	7.1	113
27	The Drosophila SK Channel (dSK) Contributes to Photoreceptor Performance by Mediating Sensitivity Control at the First Visual Network. Journal of Neuroscience, 2011, 31, 13897-13910.	3.6	30
28	The proteasomal inhibitor MG132 prevents muscular dystrophy in zebrafish. PLOS Currents, 2011, 3, RRN1286.	1.4	28
29	Intrinsic Activity in the Fly Brain Gates Visual Information during Behavioral Choices. Nature Precedings, 2010, , .	0.1	6
30	Intrinsic Activity in the Fly Brain Gates Visual Information during Behavioral Choices. PLoS ONE, 2010, 5, e14455.	2.5	50
31	Overexpressing Temperature-Sensitive Dynamin Decelerates Phototransduction and Bundles Microtubules in Drosophila Photoreceptors. Journal of Neuroscience, 2009, 29, 14199-14210.	3.6	34
32	Data Modelling for Analysis of Adaptive Changes in Fly Photoreceptors. Lecture Notes in Computer Science, 2009, , 34-48.	1.3	12
33	Biophysical Modeling of a Drosophila Photoreceptor. Lecture Notes in Computer Science, 2009, , 57-71.	1.3	6
34	Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: II Mechanisms. PLoS ONE, 2009, 4, e4306.	2.5	31
35	Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics. PLoS ONE, 2009, 4, e4307.	2.5	46
36	Distinct Roles for Two Histamine Receptors (<i>hclA</i> and <i>hclB</i>) at the <i>Drosophila</i> Photoreceptor Synapse. Journal of Neuroscience, 2008, 28, 7250-7259.	3.6	84

Mikko A Juusola

#	Article	IF	CITATIONS
37	Visual Coding in Locust Photoreceptors. PLoS ONE, 2008, 3, e2173.	2.5	21
38	Coding with spike shapes and graded potentials in cortical networks. BioEssays, 2007, 29, 178-187.	2.5	27
39	Normal Mitochondrial Dynamics Requires Rhomboid-7 and Affects Drosophila Lifespan and Neuronal Function. Current Biology, 2006, 16, 982-989.	3.9	119
40	Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila. Journal of General Physiology, 2006, 127, 495-510.	1.9	96
41	Robustness of Neural Coding in Drosophila Photoreceptors in the Absence of Slow Delayed Rectifier K+ Channels. Journal of Neuroscience, 2006, 26, 2652-2660.	3.6	61
42	Use of Meixner Functions in Estimation of Volterra Kernels of Nonlinear Systems With Delay. IEEE Transactions on Biomedical Engineering, 2005, 52, 229-237.	4.2	55
43	Stimulus History Reliably Shapes Action Potential Waveforms of Cortical Neurons. Journal of Neuroscience, 2005, 25, 5657-5665.	3.6	71
44	Interactions Between Light-Induced Currents, Voltage-Gated Currents, and Input Signal Properties in Drosophila Photoreceptors. Journal of Neurophysiology, 2004, 91, 2696-2706.	1.8	16
45	Impact of Rearing Conditions and Short-Term Light Exposure on Signaling Performance in Drosophila Photoreceptors. Journal of Neurophysiology, 2004, 92, 1918-1927.	1.8	14
46	The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors. Nature, 2003, 421, 630-634.	27.8	84
47	The Rate of Information Transfer of Naturalistic Stimulation by Graded Potentials. Journal of General Physiology, 2003, 122, 191-206.	1.9	61
48	Shaker K+ Channels Contribute Early Nonlinear Amplification to the Light Response in Drosophila Photoreceptors. Journal of Neurophysiology, 2003, 90, 2014-2021.	1.8	23
49	Molecular Basis of Amplification in Drosophila Phototransduction. Neuron, 2002, 36, 689-701.	8.1	111
50	Calcium Influx via TRP Channels Is Required to Maintain PIP2 Levels in Drosophila Photoreceptors. Neuron, 2001, 30, 149-159.	8.1	187
51	Light Adaptation in Drosophila Photoreceptors. Journal of General Physiology, 2001, 117, 27-42.	1.9	45
52	Light Adaptation in Drosophila Photoreceptors. Journal of General Physiology, 2001, 117, 3-25.	1.9	134
53	Principal Dynamic Mode Analysis of Nonlinear Transduction in a Spider Mechanoreceptor. Annals of Biomedical Engineering, 1999, 27, 391-402.	2.5	11
54	Adaptation Properties of Two Types of Sensory Neurons in a Spider Mechanoreceptor Organ. Journal of Neurophysiology, 1998, 80, 2781-2784.	1.8	28

Mikko A Juusola

#	Article	IF	CITATIONS
55	The Efficiency of Sensory Information Coding by Mechanoreceptor Neurons. Neuron, 1997, 18, 959-968.	8.1	78
56	Visual Acuity for Moving Objects in First- and Second-Order Neurons of the Fly Compound Eye. Journal of Neurophysiology, 1997, 77, 1487-1495.	1.8	33
57	Rapid coating of glass-capillary microelectrodes for single-electrode voltage-clamp. Journal of Neuroscience Methods, 1997, 71, 199-204.	2.5	18
58	Information processing by graded-potential transmission through tonically active synapses. Trends in Neurosciences, 1996, 19, 292-297.	8.6	140
59	Fast-acting compressive and facilitatory nonlinearities in light-adapted fly photoreceptors. Annals of Biomedical Engineering, 1995, 23, 70-77.	2.5	6
60	Transfer of graded potentials at the photoreceptor-interneuron synapse Journal of General Physiology, 1995, 105, 117-148.	1.9	101
61	Recording from cuticular mechanoreceptors during mechanical stimulation. Pflugers Archiv European Journal of Physiology, 1995, 431, 125-128.	2.8	14
62	A method for determining photoreceptor signal-to-noise ratio in the time and frequency domains with a pseudorandom stimulus. Visual Neuroscience, 1994, 11, 1221-1225.	1.0	23
63	Measuring complex admittance and receptor current by single electrode voltage-clamp. Journal of Neuroscience Methods, 1994, 53, 1-6.	2.5	24
64	Band-pass filtering by voltage-dependent membrane in an insect photoreceptor. Neuroscience Letters, 1993, 154, 84-88.	2.1	37
65	Measurement of cell impedance in frequency domain using discontinuous current clamp and white-noise-modulated current injection. Pflugers Archiv European Journal of Physiology, 1992, 421, 469-472.	2.8	37