List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515705/publications.pdf Version: 2024-02-01

<u> Ρετερ ΤΔαρ</u>Δακ

#	Article	IF	CITATIONS
1	Postâ€restoration grassland management overrides the effects of restoration methods in propaguleâ€rich landscapes. Ecological Applications, 2022, 32, e02463.	3.8	13
2	Turning old foes into new allies—Harnessing drainage canals for biodiversity conservation in a desiccated European lowland region. Journal of Applied Ecology, 2022, 59, 89-102.	4.0	10
3	Urgent need for updating the slogan of global climate actions from "tree planting―to "restore native vegetation― Restoration Ecology, 2022, 30, e13594.	2.9	27
4	Knowledge sharing for shared success in the decade on ecosystem restoration. Ecological Solutions and Evidence, 2022, 3, e12117.	2.0	18
5	Species-based indicators to assess habitat degradation: Comparing the conceptual, methodological, and ecological relationships between hemeroby and naturalness values. Ecological Indicators, 2022, 136, 108707.	6.3	8
6	Trade of commercial potting substrates: A largely overlooked means of the long-distance dispersal of plants. Science of the Total Environment, 2022, 825, 154093.	8.0	1
7	Environmental drivers and spatial scaling of species abundance distributions in Palaearctic grassland vegetation. Ecology, 2022, 103, e3725.	3.2	9
8	New data of plant leaf traits from Central Europe. Data in Brief, 2022, 42, 108286.	1.0	6
9	Dynamics in vegetation and seed bank composition highlight the importance of postâ€restoration management in sown grasslands. Restoration Ecology, 2021, 29, e13192.	2.9	11
10	Establishment gaps in speciesâ€poor grasslands: artificial biodiversity hotspots to support the colonization of target species. Restoration Ecology, 2021, 29, e13135.	2.9	15
11	A hencidai Mondró-halom, a löszgyep-vegetáció őrzője. Kitaibelia, 2021, 20, 143-149.	0.1	5
12	Oak regeneration at the arid boundary of the temperate deciduous forest biome: insights from a seeding and watering experiment. European Journal of Forest Research, 2021, 140, 589-601.	2.5	4
13	The Eurasian Dry Grassland Group (EDGG) in 2019–2020. Hacquetia, 2021, 20, 171-176.	0.4	2
14	The present and future of grassland restoration. Restoration Ecology, 2021, 29, e13378.	2.9	71
15	IAVS annual reports 2020. IAVS Bulletin, 2021, 2021, 8-19.	0.0	0
16	Scale dependence of species–area relationships is widespread but generally weak in Palaearctic grasslands. Journal of Vegetation Science, 2021, 32, e13044.	2.2	8
17	Zoochory on and off: A field experiment for traitâ€based analysis of establishment success of grassland species. Journal of Vegetation Science, 2021, 32, e13051.	2.2	5
18	Drivers of seedling establishment success in dryland restoration efforts. Nature Ecology and Evolution, 2021, 5, 1283-1290.	7.8	75

#	Article	IF	CITATIONS
19	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
20	Are recent protection strategies sufficient for maintaining diverse freshwater benthic diatom assemblages?. Ecological Indicators, 2021, 127, 107782.	6.3	4
21	Patterns of pollination interactions at the community level are related to the type and quantity of floral resources. Functional Ecology, 2021, 35, 2461-2471.	3.6	11
22	Different extinction debts among plants and arthropods after loss of grassland amount and connectivity. Biological Conservation, 2021, 264, 109372.	4.1	19
23	Conservation biology research priorities for 2050: A Central-Eastern European perspective. Biological Conservation, 2021, 264, 109396.	4.1	8
24	Invasion of the North American sand dropseed (Sporobolus cryptandrus) – A new pest in Eurasian sand areas?. Global Ecology and Conservation, 2021, 32, e01942.	2.1	3
25	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
26	High resistance of plant biodiversity to moderate native woody encroachment in loess steppe grassland fragments. Applied Vegetation Science, 2020, 23, 175-184.	1.9	18
27	Habitat islands outside nature reserves – Threatened biodiversity hotspots of grassland specialist plant and arthropod species. Biological Conservation, 2020, 241, 108254.	4.1	45
28	Climate, landscape history and management drive Eurasian steppe biodiversity. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 271, 151685.	1.2	15
29	The importance of dispersal and species establishment in vegetation dynamics and resilience. Journal of Vegetation Science, 2020, 31, 935-942.	2.2	13
30	Leaf trait records of vascular plant species in the Pannonian flora with special focus on endemics and rarities. Folia Geobotanica, 2020, 55, 73-79.	0.9	11
31	River embankments mitigate the loss of grassland biodiversity in agricultural landscapes. River Research and Applications, 2020, 36, 1160-1170.	1.7	15
32	Grasslands of Eastern Europe. , 2020, , 703-713.		5
33	Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography, 2020, 43, 848-859.	4.5	37
34	Beyond the Forest-Grassland Dichotomy: The Gradient-Like Organization of Habitats in Forest-Steppes. Frontiers in Plant Science, 2020, 11, 236.	3.6	11
35	Grasslands of the Palaearctic Biogeographic Realm: Introduction and Synthesis. , 2020, , 617-637.		38
36	Chemotyping of terrestrial Nostoc-like isolates from alkali grassland areas by non-targeted peptide analysis. Algal Research, 2020, 46, 101798.	4.6	10

#	Article	IF	CITATIONS
37	Germination response of invasive plants to soil burial depth and litter accumulation is speciesâ€specific. Journal of Vegetation Science, 2020, 31, 1079-1087.	2.2	15
38	A közép-tiszavidéki halmok flórakutatásának új eredményei. Kitaibelia, 2020, 24, .	0.1	0
39	Density-Dependent Plant–Plant Interactions Triggered by Grazing. Frontiers in Plant Science, 2019, 10, 876.	3.6	8
40	Water usage and seasonality as primary drivers of benthic diatom assemblages in a lowland reservoir. Ecological Indicators, 2019, 106, 105443.	6.3	11
41	Pollination and dispersal trait spectra recover faster than the growth form spectrum during spontaneous succession in sandy oldâ€fields. Applied Vegetation Science, 2019, 22, 435-443.	1.9	5
42	Recovery of species richness lags behind functional recovery in restored grasslands. Land Degradation and Development, 2019, 30, 1083-1094.	3.9	19
43	Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams. Advances in Water Resources, 2019, 126, 129-136.	3.8	35
44	Both mass ratio effects and community diversity drive biomass production in a grassland experiment. Scientific Reports, 2019, 9, 1848.	3.3	37
45	The Eurasian Dry Grassland Group (EDGC) in 2018–2019. Hacquetia, 2019, 18, 147-154.	0.4	3
46	Working Groups Annual Reports. IAVS Bulletin, 2019, 2019, 17-24.	0.0	0
47	KiegészÃŧések a magyar flóra ismeretéhez. Botanikai Kozlemenyek, 2019, 106, 71-112.	0.1	0
48	Where forests meet grasslands: Forest-steppes in Eurasia. , 2019, , 22-26.		4
49	62nd Annual Symposium of the IAVS "Vegetation Science and Biodiversity Research―14–19 July 2019, Bremen. , 2019, , 23-25.		0
50	The edge of two worlds: A new review and synthesis on Eurasian forestâ€steppes. Applied Vegetation Science, 2018, 21, 345-362.	1.9	114
51	Grassland seed bank and community resilience in a changing climate. Restoration Ecology, 2018, 26, S141.	2.9	50
52	Think twice before using narrow buffers: Attenuating mowing-induced arthropod spillover at forest – grassland edges. Agriculture, Ecosystems and Environment, 2018, 255, 37-44.	5.3	9
53	Litter removal does not compensate detrimental fire effects on biodiversity in regularly burned semi-natural grasslands. Science of the Total Environment, 2018, 622-623, 783-789.	8.0	12
54	Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restoration Ecology, 2018, 26, S65.	2.9	45

#	Article	IF	CITATIONS
55	Livestock Type is More Crucial Than Grazing Intensity: Traditional Cattle and Sheep Grazing in Shortâ€Grass Steppes. Land Degradation and Development, 2018, 29, 231-239.	3.9	129
56	Succession in soil seed banks and its implications for restoration of calcareous sand grasslands. Restoration Ecology, 2018, 26, S134.	2.9	26
57	GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia, 2018, 48, 331-347.	0.5	49
58	Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecology and Evolution, 2018, 8, 10326-10335.	1.9	45
59	Both trait-neutrality and filtering effects are validated by the vegetation patterns detected in the functional recovery of sand grasslands. Scientific Reports, 2018, 8, 13703.	3.3	9
60	Landscape and habitat filters jointly drive richness and abundance of specialist plants in terrestrial habitat islands. Landscape Ecology, 2018, 33, 1117-1132.	4.2	36
61	Colonisation processes in benthic algal communities are well reflected by functional groups. Hydrobiologia, 2018, 823, 231-245.	2.0	13
62	Ecosystem engineering by foxes is mediated by the landscape context—A case study from steppic burial mounds. Ecology and Evolution, 2018, 8, 7044-7054.	1.9	12
63	The Eurasian Dry Grassland Group (EDGG) in 2016–2017. Hacquetia, 2018, 17, 17-23.	0.4	1
64	How to cure grassland ecosystems?. IAVS Bulletin, 2018, 2018, 17-22.	0.0	0
65	A promising new tool for enhancing grassland biodiversity in fragmented landscapes: high-diversity sowing in establishment gaps. , 2018, , .		0
66	Landscape and habitat filters jointly drive richness and abundance ofspecialist plants in terrestrial grassland islands. , 2018, , .		0
67	Germination capacity of 75 herbaceous species of the pannonian flora and implications for restoration. Acta Botanica Hungarica, 2018, 60, 357-368.	0.3	3
68	Comparison of species-rich cover crop mixtures in the Tokaj wine region (Hungary). Organic Agriculture, 2017, 7, 133-139.	2.4	2
69	A new aspect of grassland vegetation dynamics: cyanobacterium colonies affect establishment success of plants. Journal of Vegetation Science, 2017, 28, 475-483.	2.2	10
70	Biodiversity on the waves of history: Conservation in a changing social and institutional environment in Hungary, a post-soviet EU member state. Biological Conservation, 2017, 211, 67-75.	4.1	25
71	New aspects of grassland recovery in oldâ€fields revealed by traitâ€based analyses of perennialâ€cropâ€mediated succession. Ecology and Evolution, 2017, 7, 2432-2440.	1.9	23
72	Filling up the gaps—Passive restoration does work on linear landscape elements. Ecological Engineering, 2017, 102, 501-508.	3.6	31

#	Article	IF	CITATIONS
73	Ecological theory provides strong support for habitat restoration. Biological Conservation, 2017, 206, 85-91.	4.1	64
74	Do largeâ€seeded herbs have a small range size? The seed mass–distribution range tradeâ€off hypothesis. Ecology and Evolution, 2017, 7, 11204-11212.	1.9	24
75	Ecological background of diatom functional groups: Comparability of classification systems. Ecological Indicators, 2017, 82, 183-188.	6.3	33
76	Taxonomical and chorological notes 5 (59–70). Studia Botanica Hungarica, 2017, 48, 263-275.	0.2	3
77	Functional diversity supports the biomass–diversity humpedâ€back relationship in phytoplankton assemblages. Functional Ecology, 2016, 30, 1593-1602.	3.6	37
78	New measurements of thousand-seed weights of species in the Pannonian flora. Acta Botanica Hungarica, 2016, 58, 187-198.	0.3	24
79	Abandonment of croplands: problem or chance for grassland restoration? case studies from hungary. Ecosystem Health and Sustainability, 2016, 2, .	3.1	38
80	Managing for species composition or diversity? Pastoral and free grazing systems in alkali steppes. Agriculture, Ecosystems and Environment, 2016, 234, 23-30.	5.3	51
81	The Palaearctic steppe biome: a new synthesis. Biodiversity and Conservation, 2016, 25, 2197-2231.	2.6	167
82	Factors threatening grassland specialist plants - A multi-proxy study on the vegetation of isolated grasslands. Biological Conservation, 2016, 204, 255-262.	4.1	51
83	Step(pe) up! Raising the profile of the Palaearctic natural grasslands. Biodiversity and Conservation, 2016, 25, 2187-2195.	2.6	43
84	Higher seed number compensates for lower fruit set in deceptive orchids. Journal of Ecology, 2016, 104, 343-351.	4.0	39
85	Effects of Land Use and Wildfires on the Habitat Selection of Great Bustard (<i>Otis tarda</i>) Tj ETQq1 1 0.784	314 rgBT	/Oyerlock 10
86	The invasion of common milkweed (<i>Asclepias syriaca</i>) in sandy oldâ€fields – is it a threat to the native flora?. Applied Vegetation Science, 2016, 19, 218-224.	1.9	39
87	Combined eco-morphological functional groups are reliable indicators of colonisation processes of benthic diatom assemblages in a lowland stream. Ecological Indicators, 2016, 64, 31-38.	6.3	55
88	River Dikes in Agricultural Landscapes: The Importance of Secondary Habitats in Maintaining Landscape-Scale Diversity. Wetlands, 2016, 36, 251-264.	1.5	17
89	Cultural monuments and nature conservation: a review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodiversity and Conservation, 2016, 25, 2473-2490.	2.6	95
90	Supporting biodiversity by prescribed burning in grasslands — A multi-taxa approach. Science of the Total Environment, 2016, 572, 1377-1384.	8.0	54

#	Article	IF	CITATIONS
91	The Eurasian Dry Grassland Group (EDGG) in 2015–2016. Hacquetia, 2016, 15, 15-19.	0.4	2
92	Establishment of three cover crop mixtures in vineyards. Scientia Horticulturae, 2015, 197, 117-123.	3.6	24
93	Halophilic diatom taxa are sensitive indicators of even short term changes in lowland lotic systems. Acta Botanica Croatica, 2015, 74, 287-302.	0.7	27
94	Reed cut, habitat diversity and productivity in wetlands. Ecological Complexity, 2015, 22, 121-125.	2.9	21
95	Both facilitation and limiting similarity shape the species coexistence in dry alkali grasslands. Ecological Complexity, 2015, 21, 34-38.	2.9	27
96	Micro-topographic heterogeneity increases plant diversity in old stages of restored grasslands. Basic and Applied Ecology, 2015, 16, 291-299.	2.7	41
97	Conservation Value, Management and Restoration of Europe'S Semi‑Natural Open Landscapes. Hacquetia, 2015, 14, 5-17.	0.4	31
98	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	4.1	172
99	Bridging the research-practice gap: Conservation research priorities in a Central and Eastern European country. Journal for Nature Conservation, 2015, 28, 133-148.	1.8	11
100	Does disturbance enhance the competitive effect of the invasive Solidago canadensis on the performance of two native grasses?. Biological Invasions, 2015, 17, 3303-3315.	2.4	34
101	Traditional Cattle Grazing in a Mosaic Alkali Landscape: Effects on Grassland Biodiversity along a Moisture Gradient. PLoS ONE, 2014, 9, e97095.	2.5	51
102	Sustaining recovered grasslands is not likely without proper management: vegetation changes after cessation of mowing. Biodiversity and Conservation, 2014, 23, 741-751.	2.6	38
103	Secondary succession in sandy oldâ€fields: a promising example of spontaneous grassland recovery. Applied Vegetation Science, 2014, 17, 214-224.	1.9	95
104	Environmental factors driving seed bank diversity in alkali grasslands. Agriculture, Ecosystems and Environment, 2014, 182, 80-87.	5.3	59
105	Review: Prospects and limitations of prescribed burning as a management tool in European grasslands. Basic and Applied Ecology, 2014, 15, 26-33.	2.7	113
106	Ecological diatom guilds are useful but not sensitive enough as indicators of extremely changing water regimes. Hydrobiologia, 2014, 738, 191-204.	2.0	39
107	Biodiversity of Palaearctic grasslands: a synthesis. Agriculture, Ecosystems and Environment, 2014, 182, 1-14.	5.3	422
108	European grassland ecosystems: threatened hotspots of biodiversity. Biodiversity and Conservation, 2013, 22, 2131-2138.	2.6	276

#	Article	IF	CITATIONS
109	Effects of litter on seedling establishment: an indoor experiment with short-lived Brassicaceae species. Plant Ecology, 2013, 214, 189-193.	1.6	18
110	Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages. Hydrobiologia, 2013, 710, 189-203.	2.0	7
111	Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands. Journal of Vegetation Science, 2013, 24, 1195-1203.	2.2	99
112	Is regular mowing the most appropriate and cost-effective management maintaining diversity and biomass of target forbs in mountain hay meadows?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 303-309.	1.2	100
113	Fast restoration of grassland vegetation by a combination of seed mixture sowing and low-diversity hay transfer. Ecological Engineering, 2012, 44, 133-138.	3.6	32
114	Recovery of native grass biodiversity by sowing on former croplands: Is weed suppression a feasible goal for grassland restoration?. Journal for Nature Conservation, 2012, 20, 41-48.	1.8	38
115	Grassland restoration to conserve landscapeâ€level biodiversity: a synthesis of early results from a largeâ€scale project. Applied Vegetation Science, 2012, 15, 264-276.	1.9	43
116	Vegetation of the Dolines in Mecsek Mountains (South Hungary) in relation to the Local Plant Communities. Acta Carsologica, 2012, 38, .	0.7	27
117	Penetration of weeds into the herbaceous understorey and soil seed bank of a Turkey oak-sessile oak forest in Hungary. Community Ecology, 2011, 12, 227-233.	0.9	12
118	Lucerneâ€dominated fields recover native grass diversity without intensive management actions. Journal of Applied Ecology, 2011, 48, 257-264.	4.0	65
119	Restoration Potential in Seed Banks of Acidic Fen and Dryâ€Mesophilous Meadows: Can Restoration Be Based on Local Seed Banks?. Restoration Ecology, 2011, 19, 9-15.	2.9	76
120	Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodiversity and Conservation, 2011, 20, 2311-2332.	2.6	244
121	Litter and graminoid biomass accumulation suppresses weedy forbs in grassland restoration. Plant Biosystems, 2011, 145, 730-737.	1.6	43
122	Early vegetation development after grassland restoration by sowing low-diversity seed mixtures in former sunflower and cereal fields. Acta Biologica Hungarica, 2010, 61, 226-235.	0.7	7
123	The role of seed bank in the dynamics of understorey in an oak forest in Hungary. Acta Biologica Hungarica, 2010, 61, 109-119.	0.7	7
124	Restoring grassland biodiversity: Sowing low-diversity seed mixtures can lead to rapid favourable changes. Biological Conservation, 2010, 143, 806-812.	4.1	89
125	Seed Bank and Vegetation Development of Sandy Grasslands After Goose Breeding. Folia Geobotanica, 2009, 44, 31-46.	0.9	27
126	Cultural heritage and biodiversity conservation – plant introduction and practical restoration on ancient burial mounds. Nature Conservation, 0, 24, 65-80.	0.0	26

#	Article	IF	CITATIONS
127	Világunk megismerése és működésének megértése legalább olyan fontos, mint az innováció. Tudomány, 0, , .	Magyar 0.0	0
128	The Eurasian Dry Grassland Group – conserving grassland habitats in the Palaearctic region. ARPHA Conference Abstracts, 0, 2, .	0.0	14
129	MagyarorszÃįgi kutatÃįsi pÃįlyÃįzatok és ösztöndÃjak fiatal kutatói szemmel. ÄłtalÃįnos irÃįnyelvek és ajÃįnlÃįsok a Fiatal Kutatók AkadémiÃįjÃįtól. Magyar TudomÃįny, 0, , .	0.0	0
130	Fiatal kutatók nehézségei a COVID–19 járvány alatt • Difficulties of Young Researchers during the Covid-19 Pandemic. Magyar Tudomány, 0, , .	0.0	1
131	Increasing abundance of an invasive C4 grass is associated with larger community changes away than at home. Applied Vegetation Science, 0, , .	1.9	1