List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515705/publications.pdf Version: 2024-02-01

<u> Ρετερ ΤΔαρ</u>Δακ

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Biodiversity of Palaearctic grasslands: a synthesis. Agriculture, Ecosystems and Environment, 2014, 182, 1-14.	5.3	422
3	European grassland ecosystems: threatened hotspots of biodiversity. Biodiversity and Conservation, 2013, 22, 2131-2138.	2.6	276
4	Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodiversity and Conservation, 2011, 20, 2311-2332.	2.6	244
5	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	4.1	172
6	The Palaearctic steppe biome: a new synthesis. Biodiversity and Conservation, 2016, 25, 2197-2231.	2.6	167
7	Livestock Type is More Crucial Than Grazing Intensity: Traditional Cattle and Sheep Grazing in Shortâ€Grass Steppes. Land Degradation and Development, 2018, 29, 231-239.	3.9	129
8	The edge of two worlds: A new review and synthesis on Eurasian forestâ€steppes. Applied Vegetation Science, 2018, 21, 345-362.	1.9	114
9	Review: Prospects and limitations of prescribed burning as a management tool in European grasslands. Basic and Applied Ecology, 2014, 15, 26-33.	2.7	113
10	ls regular mowing the most appropriate and cost-effective management maintaining diversity and biomass of target forbs in mountain hay meadows?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 303-309.	1.2	100
11	Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands. Journal of Vegetation Science, 2013, 24, 1195-1203.	2.2	99
12	Secondary succession in sandy oldâ€fields: a promising example of spontaneous grassland recovery. Applied Vegetation Science, 2014, 17, 214-224.	1.9	95
13	Cultural monuments and nature conservation: a review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodiversity and Conservation, 2016, 25, 2473-2490.	2.6	95
14	Restoring grassland biodiversity: Sowing low-diversity seed mixtures can lead to rapid favourable changes. Biological Conservation, 2010, 143, 806-812.	4.1	89
15	Restoration Potential in Seed Banks of Acidic Fen and Dryâ€Mesophilous Meadows: Can Restoration Be Based on Local Seed Banks?. Restoration Ecology, 2011, 19, 9-15.	2.9	76
16	Drivers of seedling establishment success in dryland restoration efforts. Nature Ecology and Evolution, 2021, 5, 1283-1290.	7.8	75
17	The present and future of grassland restoration. Restoration Ecology, 2021, 29, e13378.	2.9	71
18	Lucerneâ€dominated fields recover native grass diversity without intensive management actions. Journal of Applied Ecology, 2011, 48, 257-264.	4.0	65

#	Article	IF	CITATIONS
19	Ecological theory provides strong support for habitat restoration. Biological Conservation, 2017, 206, 85-91.	4.1	64
20	Environmental factors driving seed bank diversity in alkali grasslands. Agriculture, Ecosystems and Environment, 2014, 182, 80-87.	5.3	59
21	Combined eco-morphological functional groups are reliable indicators of colonisation processes of benthic diatom assemblages in a lowland stream. Ecological Indicators, 2016, 64, 31-38.	6.3	55
22	Supporting biodiversity by prescribed burning in grasslands — A multi-taxa approach. Science of the Total Environment, 2016, 572, 1377-1384.	8.0	54
23	Traditional Cattle Grazing in a Mosaic Alkali Landscape: Effects on Grassland Biodiversity along a Moisture Gradient. PLoS ONE, 2014, 9, e97095.	2.5	51
24	Managing for species composition or diversity? Pastoral and free grazing systems in alkali steppes. Agriculture, Ecosystems and Environment, 2016, 234, 23-30.	5.3	51
25	Factors threatening grassland specialist plants - A multi-proxy study on the vegetation of isolated grasslands. Biological Conservation, 2016, 204, 255-262.	4.1	51
26	Grassland seed bank and community resilience in a changing climate. Restoration Ecology, 2018, 26, S141.	2.9	50
27	GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia, 2018, 48, 331-347.	0.5	49
28	Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restoration Ecology, 2018, 26, S65.	2.9	45
29	Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecology and Evolution, 2018, 8, 10326-10335.	1.9	45
30	Habitat islands outside nature reserves – Threatened biodiversity hotspots of grassland specialist plant and arthropod species. Biological Conservation, 2020, 241, 108254.	4.1	45
31	Litter and graminoid biomass accumulation suppresses weedy forbs in grassland restoration. Plant Biosystems, 2011, 145, 730-737.	1.6	43
32	Grassland restoration to conserve landscapeâ€level biodiversity: a synthesis of early results from a largeâ€scale project. Applied Vegetation Science, 2012, 15, 264-276.	1.9	43
33	Step(pe) up! Raising the profile of the Palaearctic natural grasslands. Biodiversity and Conservation, 2016, 25, 2187-2195.	2.6	43
34	Micro-topographic heterogeneity increases plant diversity in old stages of restored grasslands. Basic and Applied Ecology, 2015, 16, 291-299.	2.7	41
35	Ecological diatom guilds are useful but not sensitive enough as indicators of extremely changing water regimes. Hydrobiologia, 2014, 738, 191-204.	2.0	39
36	Higher seed number compensates for lower fruit set in deceptive orchids. Journal of Ecology, 2016, 104, 343-351.	4.0	39

#	Article	IF	CITATIONS
37	The invasion of common milkweed (<i>Asclepias syriaca</i>) in sandy oldâ€fields – is it a threat to the native flora?. Applied Vegetation Science, 2016, 19, 218-224.	1.9	39
38	Recovery of native grass biodiversity by sowing on former croplands: Is weed suppression a feasible goal for grassland restoration?. Journal for Nature Conservation, 2012, 20, 41-48.	1.8	38
39	Sustaining recovered grasslands is not likely without proper management: vegetation changes after cessation of mowing. Biodiversity and Conservation, 2014, 23, 741-751.	2.6	38
40	Abandonment of croplands: problem or chance for grassland restoration? case studies from hungary. Ecosystem Health and Sustainability, 2016, 2, .	3.1	38
41	Grasslands of the Palaearctic Biogeographic Realm: Introduction and Synthesis. , 2020, , 617-637.		38
42	Functional diversity supports the biomass–diversity humpedâ€back relationship in phytoplankton assemblages. Functional Ecology, 2016, 30, 1593-1602.	3.6	37
43	Both mass ratio effects and community diversity drive biomass production in a grassland experiment. Scientific Reports, 2019, 9, 1848.	3.3	37
44	Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography, 2020, 43, 848-859.	4.5	37
45	Landscape and habitat filters jointly drive richness and abundance of specialist plants in terrestrial habitat islands. Landscape Ecology, 2018, 33, 1117-1132.	4.2	36
46	Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams. Advances in Water Resources, 2019, 126, 129-136.	3.8	35
47	Does disturbance enhance the competitive effect of the invasive Solidago canadensis on the performance of two native grasses?. Biological Invasions, 2015, 17, 3303-3315.	2.4	34
48	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
49	Ecological background of diatom functional groups: Comparability of classification systems. Ecological Indicators, 2017, 82, 183-188.	6.3	33
50	Fast restoration of grassland vegetation by a combination of seed mixture sowing and low-diversity hay transfer. Ecological Engineering, 2012, 44, 133-138.	3.6	32
51	Conservation Value, Management and Restoration of Europe'S Semi‑Natural Open Landscapes. Hacquetia, 2015, 14, 5-17.	0.4	31
52	Filling up the gaps—Passive restoration does work on linear landscape elements. Ecological Engineering, 2017, 102, 501-508.	3.6	31
53	Seed Bank and Vegetation Development of Sandy Grasslands After Goose Breeding. Folia Geobotanica, 2009, 44, 31-46.	0.9	27
54	Halophilic diatom taxa are sensitive indicators of even short term changes in lowland lotic systems. Acta Botanica Croatica, 2015, 74, 287-302.	0.7	27

#	Article	IF	CITATIONS
55	Both facilitation and limiting similarity shape the species coexistence in dry alkali grasslands. Ecological Complexity, 2015, 21, 34-38.	2.9	27
56	Vegetation of the Dolines in Mecsek Mountains (South Hungary) in relation to the Local Plant Communities. Acta Carsologica, 2012, 38, .	0.7	27
57	Urgent need for updating the slogan of global climate actions from "tree planting―to "restore native vegetation― Restoration Ecology, 2022, 30, e13594.	2.9	27
58	Succession in soil seed banks and its implications for restoration of calcareous sand grasslands. Restoration Ecology, 2018, 26, S134.	2.9	26
59	Cultural heritage and biodiversity conservation – plant introduction and practical restoration on ancient burial mounds. Nature Conservation, 0, 24, 65-80.	0.0	26
60	Biodiversity on the waves of history: Conservation in a changing social and institutional environment in Hungary, a post-soviet EU member state. Biological Conservation, 2017, 211, 67-75.	4.1	25
61	Establishment of three cover crop mixtures in vineyards. Scientia Horticulturae, 2015, 197, 117-123.	3.6	24
62	New measurements of thousand-seed weights of species in the Pannonian flora. Acta Botanica Hungarica, 2016, 58, 187-198.	0.3	24
63	Do largeâ€seeded herbs have a small range size? The seed mass–distribution range tradeâ€off hypothesis. Ecology and Evolution, 2017, 7, 11204-11212.	1.9	24
64	New aspects of grassland recovery in oldâ€fields revealed by traitâ€based analyses of perennialâ€cropâ€mediated succession. Ecology and Evolution, 2017, 7, 2432-2440.	1.9	23
65	Reed cut, habitat diversity and productivity in wetlands. Ecological Complexity, 2015, 22, 121-125.	2.9	21
66	Recovery of species richness lags behind functional recovery in restored grasslands. Land Degradation and Development, 2019, 30, 1083-1094.	3.9	19
67	Different extinction debts among plants and arthropods after loss of grassland amount and connectivity. Biological Conservation, 2021, 264, 109372.	4.1	19
68	Effects of litter on seedling establishment: an indoor experiment with short-lived Brassicaceae species. Plant Ecology, 2013, 214, 189-193.	1.6	18
69	High resistance of plant biodiversity to moderate native woody encroachment in loess steppe grassland fragments. Applied Vegetation Science, 2020, 23, 175-184.	1.9	18
70	Knowledge sharing for shared success in the decade on ecosystem restoration. Ecological Solutions and Evidence, 2022, 3, e12117.	2.0	18
71	River Dikes in Agricultural Landscapes: The Importance of Secondary Habitats in Maintaining Landscape-Scale Diversity. Wetlands, 2016, 36, 251-264.	1.5	17

Effects of Land Use and Wildfires on the Habitat Selection of Great Bustard ($\langle i \rangle$ Otis tarda $\langle i \rangle$) Tj ETQq0 0 0 rgBT / $\frac{0}{3.9}$ relock 10 Tf 50 62

#	Article	IF	CITATIONS
73	Climate, landscape history and management drive Eurasian steppe biodiversity. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 271, 151685.	1.2	15
74	River embankments mitigate the loss of grassland biodiversity in agricultural landscapes. River Research and Applications, 2020, 36, 1160-1170.	1.7	15
75	Germination response of invasive plants to soil burial depth and litter accumulation is speciesâ€ s pecific. Journal of Vegetation Science, 2020, 31, 1079-1087.	2.2	15
76	Establishment gaps in speciesâ€poor grasslands: artificial biodiversity hotspots to support the colonization of target species. Restoration Ecology, 2021, 29, e13135.	2.9	15
77	The Eurasian Dry Grassland Group – conserving grassland habitats in the Palaearctic region. ARPHA Conference Abstracts, 0, 2, .	0.0	14
78	Colonisation processes in benthic algal communities are well reflected by functional groups. Hydrobiologia, 2018, 823, 231-245.	2.0	13
79	The importance of dispersal and species establishment in vegetation dynamics and resilience. Journal of Vegetation Science, 2020, 31, 935-942.	2.2	13
80	Postâ€restoration grassland management overrides the effects of restoration methods in propaguleâ€rich landscapes. Ecological Applications, 2022, 32, e02463.	3.8	13
81	Penetration of weeds into the herbaceous understorey and soil seed bank of a Turkey oak-sessile oak forest in Hungary. Community Ecology, 2011, 12, 227-233.	0.9	12
82	Litter removal does not compensate detrimental fire effects on biodiversity in regularly burned semi-natural grasslands. Science of the Total Environment, 2018, 622-623, 783-789.	8.0	12
83	Ecosystem engineering by foxes is mediated by the landscape context—A case study from steppic burial mounds. Ecology and Evolution, 2018, 8, 7044-7054.	1.9	12
84	Bridging the research-practice gap: Conservation research priorities in a Central and Eastern European country. Journal for Nature Conservation, 2015, 28, 133-148.	1.8	11
85	Water usage and seasonality as primary drivers of benthic diatom assemblages in a lowland reservoir. Ecological Indicators, 2019, 106, 105443.	6.3	11
86	Leaf trait records of vascular plant species in the Pannonian flora with special focus on endemics and rarities. Folia Geobotanica, 2020, 55, 73-79.	0.9	11
87	Beyond the Forest-Grassland Dichotomy: The Gradient-Like Organization of Habitats in Forest-Steppes. Frontiers in Plant Science, 2020, 11, 236.	3.6	11
88	Dynamics in vegetation and seed bank composition highlight the importance of postâ€restoration management in sown grasslands. Restoration Ecology, 2021, 29, e13192.	2.9	11
89	Patterns of pollination interactions at the community level are related to the type and quantity of floral resources. Functional Ecology, 2021, 35, 2461-2471.	3.6	11
90	A new aspect of grassland vegetation dynamics: cyanobacterium colonies affect establishment success of plants. Journal of Vegetation Science, 2017, 28, 475-483.	2.2	10

#	Article	IF	CITATIONS
91	Chemotyping of terrestrial Nostoc-like isolates from alkali grassland areas by non-targeted peptide analysis. Algal Research, 2020, 46, 101798.	4.6	10
92	Turning old foes into new allies—Harnessing drainage canals for biodiversity conservation in a desiccated European lowland region. Journal of Applied Ecology, 2022, 59, 89-102.	4.0	10
93	Think twice before using narrow buffers: Attenuating mowing-induced arthropod spillover at forest – grassland edges. Agriculture, Ecosystems and Environment, 2018, 255, 37-44.	5.3	9
94	Both trait-neutrality and filtering effects are validated by the vegetation patterns detected in the functional recovery of sand grasslands. Scientific Reports, 2018, 8, 13703.	3.3	9
95	Environmental drivers and spatial scaling of species abundance distributions in Palaearctic grassland vegetation. Ecology, 2022, 103, e3725.	3.2	9
96	Density-Dependent Plant–Plant Interactions Triggered by Grazing. Frontiers in Plant Science, 2019, 10, 876.	3.6	8
97	Scale dependence of species–area relationships is widespread but generally weak in Palaearctic grasslands. Journal of Vegetation Science, 2021, 32, e13044.	2.2	8
98	Conservation biology research priorities for 2050: A Central-Eastern European perspective. Biological Conservation, 2021, 264, 109396.	4.1	8
99	Species-based indicators to assess habitat degradation: Comparing the conceptual, methodological, and ecological relationships between hemeroby and naturalness values. Ecological Indicators, 2022, 136, 108707.	6.3	8
100	Early vegetation development after grassland restoration by sowing low-diversity seed mixtures in former sunflower and cereal fields. Acta Biologica Hungarica, 2010, 61, 226-235.	0.7	7
101	The role of seed bank in the dynamics of understorey in an oak forest in Hungary. Acta Biologica Hungarica, 2010, 61, 109-119.	0.7	7
102	Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages. Hydrobiologia, 2013, 710, 189-203.	2.0	7
103	New data of plant leaf traits from Central Europe. Data in Brief, 2022, 42, 108286.	1.0	6
104	Pollination and dispersal trait spectra recover faster than the growth form spectrum during spontaneous succession in sandy oldâ€fields. Applied Vegetation Science, 2019, 22, 435-443.	1.9	5
105	Grasslands of Eastern Europe. , 2020, , 703-713.		5
106	A hencidai Mondró-halom, a löszgyep-vegetáció őrzője. Kitaibelia, 2021, 20, 143-149.	0.1	5
107	Zoochory on and off: A field experiment for traitâ€based analysis of establishment success of grassland species. Journal of Vegetation Science, 2021, 32, e13051.	2.2	5
108	Oak regeneration at the arid boundary of the temperate deciduous forest biome: insights from a seeding and watering experiment. European Journal of Forest Research, 2021, 140, 589-601.	2.5	4

#	Article	IF	CITATIONS
109	Are recent protection strategies sufficient for maintaining diverse freshwater benthic diatom assemblages?. Ecological Indicators, 2021, 127, 107782.	6.3	4
110	Where forests meet grasslands: Forest-steppes in Eurasia. , 2019, , 22-26.		4
111	The Eurasian Dry Grassland Group (EDGG) in 2018–2019. Hacquetia, 2019, 18, 147-154.	0.4	3
112	Taxonomical and chorological notes 5 (59–70). Studia Botanica Hungarica, 2017, 48, 263-275.	0.2	3
113	Germination capacity of 75 herbaceous species of the pannonian flora and implications for restoration. Acta Botanica Hungarica, 2018, 60, 357-368.	0.3	3
114	Invasion of the North American sand dropseed (Sporobolus cryptandrus) – A new pest in Eurasian sand areas?. Global Ecology and Conservation, 2021, 32, e01942.	2.1	3
115	Comparison of species-rich cover crop mixtures in the Tokaj wine region (Hungary). Organic Agriculture, 2017, 7, 133-139.	2.4	2
116	The Eurasian Dry Grassland Group (EDGG) in 2019–2020. Hacquetia, 2021, 20, 171-176.	0.4	2
117	The Eurasian Dry Grassland Group (EDGG) in 2015–2016. Hacquetia, 2016, 15, 15-19.	0.4	2
118	The Eurasian Dry Grassland Group (EDGG) in 2016–2017. Hacquetia, 2018, 17, 17-23.	0.4	1
119	Fiatal kutatók nehézségei a COVID–19 jÃįrvÃįny alatt • Difficulties of Young Researchers during the Covid-19 Pandemic. Magyar TudomÃįny, 0, , .	0.0	1
120	Increasing abundance of an invasive C4 grass is associated with larger community changes away than at home. Applied Vegetation Science, 0, , .	1.9	1
121	Trade of commercial potting substrates: A largely overlooked means of the long-distance dispersal of plants. Science of the Total Environment, 2022, 825, 154093.	8.0	1
122	IAVS annual reports 2020. IAVS Bulletin, 2021, 2021, 8-19.	0.0	0
123	How to cure grassland ecosystems?. IAVS Bulletin, 2018, 2018, 17-22.	0.0	0
124	A promising new tool for enhancing grassland biodiversity in fragmented landscapes: high-diversity sowing in establishment gaps. , 2018, , .		0
125	Landscape and habitat filters jointly drive richness and abundance ofspecialist plants in terrestrial grassland islands. , 2018, , .		0
126	A közép-tiszavidéki halmok flórakutatásának új eredményei. Kitaibelia, 2020, 24, .	0.1	0

#	Article	IF	CITATIONS
127	Working Groups Annual Reports. IAVS Bulletin, 2019, 2019, 17-24.	0.0	0
128	KiegészÃŧések a magyar flóra ismeretéhez. Botanikai Kozlemenyek, 2019, 106, 71-112.	0.1	0
129	VilÃjgunk megismerése és működésének megértése legalÃjbb olyan fontos, mint az innovÃjció. TudomÃjny, 0, , .	Magyar 0.0	0
130	MagyarorszÃigi kutatÃisi pÃilyÃizatok és ösztöndÃjak fiatal kutatói szemmel. ÄłtalÃinos irÃinyelvek és ajÃinlÃisok a Fiatal Kutatók AkadémiÃijÃitól. Magyar TudomÃiny, O, , .	0.0	0
131	62nd Annual Symposium of the IAVS "Vegetation Science and Biodiversity Research―14–19 July 2019, Bremen. , 2019, , 23-25.		0