Douglas G Wallace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Dietary Soy Protein Isolate Versus Isoflavones Alone on Poststroke Skilled Ladder Rung Walking and Cortical mRNA Expression Differ in Adult Male Rats. Journal of Medicinal Food, 2022, 25, 158-165.	0.8	1
2	Sexually dimorphic organization of open field behavior following moderate prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 2022, 46, 861-875.	1.4	3
3	Exposure to 5 cGy 28Si Particles Induces Long-Term Microglial Activation in the Striatum and Subventricular Zone and Concomitant Neurogenic Suppression. Radiation Research, 2022, , .	0.7	3
4	Rapid loss of fine motor skills after low dose space radiation exposure. Behavioural Brain Research, 2022, 430, 113907.	1.2	10
5	Skilled movement and posture deficits in rat string-pulling behavior following low dose space radiation (28Si) exposure. Behavioural Brain Research, 2021, 400, 113010.	1.2	15
6	Effects of acquired vestibular pathology on the organization of mouse exploratory behavior. Experimental Brain Research, 2021, 239, 1125-1139.	0.7	5
7	Organization of exploratory behavior under dark conditions in female and male rats. Behavioural Processes, 2021, 189, 104437.	0.5	9
8	Effects of string length on the organization of rat string-pulling behavior. Animal Cognition, 2020, 23, 415-425.	0.9	7
9	Making waves: Comparing Morris water task performance in rats and prairie voles. Behavioural Brain Research, 2019, 360, 7-15.	1.2	2
10	Human string-pulling with and without a string: movement, sensory control, and memory. Experimental Brain Research, 2019, 237, 3431-3447.	0.7	14
11	The structure of arm and hand movements in a spontaneous and food rewarded on-line string-pulling task by the mouse. Behavioural Brain Research, 2018, 345, 49-58.	1.2	25
12	String-pulling for food by the rat: Assessment of movement, topography and kinematics of a bilaterally skilled forelimb act. Learning and Motivation, 2018, 61, 63-73.	0.6	22
13	Antisense oligonucleotide therapy rescues disruptions in organization of exploratory movements associated with Usher syndrome type 1C in mice. Behavioural Brain Research, 2018, 338, 76-87.	1.2	17
14	Ethological approaches to studying psychological phenomena. Learning and Motivation, 2018, 61, 1-2.	0.6	0
15	Unilateral forelimb sensorimotor cortex devascularization disrupts the topographic and kinematic characteristics of hand movements while string-pulling for food in the rat. Behavioural Brain Research, 2018, 338, 88-100.	1.2	23
16	Reprint of "Sequential organization of movement kinematics is associated with spatial orientation across scales and species― Learning and Motivation, 2018, 61, 32-40.	0.6	1
17	Neuroethology of spatial cognition. Current Biology, 2018, 28, R988-R992.	1.8	8
18	Sequential organization of movement kinematics is associated with spatial orientation across scales and species. Learning and Motivation, 2017, 58, 27-36.	0.6	4

DOUGLAS G WALLACE

#	Article	IF	CITATIONS
19	Otolith dysfunction alters exploratory movement in mice. Behavioural Brain Research, 2017, 325, 1-11.	1.2	19
20	High dose alcohol consumption predicts less reduction in post-traumatic stress symptoms after a campus mass shooting. Anxiety, Stress and Coping, 2017, 30, 609-618.	1.7	2
21	Unilateral lesions of the dorsocentral striatum (DCS) disrupt spatial and temporal characteristics of food protection behavior. Brain Structure and Function, 2017, 222, 2697-2710.	1.2	2
22	The medial frontal cortex contributes to but does not organize rat exploratory behavior. Neuroscience, 2016, 336, 1-11.	1.1	7
23	A history of adolescent binge drinking in humans is associated with impaired self-movement cue processing on manipulatory scale navigation tasks. Physiology and Behavior, 2016, 161, 130-139.	1.0	4
24	Cholinergic deafferentation of the hippocampus causes non-temporally graded retrograde amnesia in an odor discrimination task. Behavioural Brain Research, 2016, 299, 97-104.	1.2	10
25	Otolithic information is required for homing in the mouse. Hippocampus, 2015, 25, 890-899.	0.9	19
26	Lesions of the hippocampus or dorsolateral striatum disrupt distinct aspects of spatial navigation strategies based on proximal and distal information in a cued variant of the Morris water task. Behavioural Brain Research, 2015, 289, 105-117.	1.2	20
27	Comparison of direction and distance estimation across spatial tasks: Absence of sexually dimorphic self-movement cues processing. Learning and Motivation, 2015, 51, 11-24.	0.6	8
28	Infusion of GAT1-saporin into the medial septum/vertical limb of the diagonal band disrupts self-movement cue processing and spares mnemonic function. Brain Structure and Function, 2013, 218, 1099-1114.	1.2	17
29	Limbic system structures differentially contribute to exploratory trip organization of the rat. Hippocampus, 2013, 23, 139-152.	0.9	24
30	Subcutaneous daidzein administration enhances recovery of skilled ladder rung walking performance following stroke in rats. Behavioural Brain Research, 2013, 256, 428-431.	1.2	23
31	Analysis of movement kinematics on analogous spatial learning tasks demonstrates conservation of direction and distance estimation across humans (Homo sapiens) and rats (Rattus norvegicus) Journal of Comparative Psychology (Washington, D C: 1983), 2013, 127, 179-193.	0.3	6
32	Serial pattern learning during skilled walking. Journal of Integrative Neuroscience, 2012, 11, 17-32.	0.8	8
33	A Semiâ€Purified Soy Protein Diet Preserves Skilled Ladder Rung Walking Performance after Stroke in Rats. FASEB Journal, 2012, 26, 921.6.	0.2	0
34	Mammillothalamic tract lesions disrupt dead reckoning in the rat. European Journal of Neuroscience, 2011, 33, 371-381.	1.2	22
35	Navigating with fingers and feet: Analysis of human (Homo sapiens) and rat (Rattus norvegicus) movement organization during nonvisual spatial tasks Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 381-394.	0.3	11
36	Fractionating dead reckoning: role of the compass, odometer, logbook, and home base establishment in spatial orientation. Die Naturwissenschaften, 2008, 95, 1011-1026.	0.6	34

DOUGLAS G WALLACE

#	Article	IF	CITATIONS
37	Determinants of phrasing effects in rat serial pattern learning. Animal Cognition, 2008, 11, 199-214.	0.9	13
38	Organization of food protection behavior is differentially influenced by 192 IgG-saporin lesions of either the medial septum or the nucleus basalis magnocellularis. Brain Research, 2008, 1241, 122-135.	1.1	14
39	Medial septum lesions disrupt exploratory trip organization: Evidence for septohippocampal involvement in dead reckoning. Physiology and Behavior, 2007, 90, 412-424.	1.0	35
40	Selective hippocampal cholinergic deafferentation impairs self-movement cue use during a food hoarding task. Behavioural Brain Research, 2007, 183, 78-86.	1.2	31
41	Comparative analysis of movement characteristics during dead-reckoning-based navigation in humans and rats Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 331-344.	0.3	18
42	Movement characteristics support a role for dead reckoning in organizing exploratory behavior. Animal Cognition, 2006, 9, 219-228.	0.9	48
43	Pharmacological manipulations of food protection behavior in rats: Evidence for dopaminergic contributions to time perception during a natural behavior. Brain Research, 2006, 1112, 213-221.	1.1	15
44	The development of spatial capacity in piloting and dead reckoning by infant rats: Use of the huddle as a home base for spatial navigation. Developmental Psychobiology, 2005, 46, 350-361.	0.9	48
45	NMDA lesions of Ammon's horn and the dentate gyrus disrupt the direct and temporally paced homing displayed by rats exploring a novel environment: evidence for a role of the hippocampus in dead reckoning. European Journal of Neuroscience, 2003, 18, 513-523.	1.2	59
46	On the origins of autobiographical memory. Behavioural Brain Research, 2003, 138, 113-119.	1.2	25
47	Odor tracking in rats with orbital frontal lesions Behavioral Neuroscience, 2003, 117, 616-620.	0.6	2
48	Fimbria-Fornix Lesions Disrupt the Dead Reckoning (Homing) Component of Exploratory Behavior in Mice. Learning and Memory, 2002, 9, 387-394.	0.5	39
49	What is learned in sequential learning? An associative model of reward magnitude serial-pattern learning Journal of Experimental Psychology, 2002, 28, 43-63.	1.9	21
50	Rats can track odors, other rats, and themselves: implications for the study of spatial behavior. Behavioural Brain Research, 2002, 131, 185-192.	1.2	104
51	Vestibular Information Is Required for Dead Reckoning in the Rat. Journal of Neuroscience, 2002, 22, 10009-10017.	1.7	168
52	Quantification of a single exploratory trip reveals hippocampal formation mediated dead reckoning. Journal of Neuroscience Methods, 2002, 113, 131-145.	1.3	53
53	Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests. Behavioural Brain Research, 2001, 127, 49-69.	1.2	161
54	Number, But Not Rhythmicity, of Temporal Cues Determines Phrasing Effects in Rat Serial-Pattern Learning. Learning and Motivation, 2000, 31, 301-322.	0.6	23