List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515554/publications.pdf Version: 2024-02-01

ADIIN K IVED

#	Article	IF	CITATIONS
1	Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today, 2006, 11, 812-818.	6.4	1,633
2	PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Frontiers in Pharmacology, 2017, 8, 561.	3.5	1,276
3	Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials, 2013, 34, 3489-3502.	11.4	314
4	Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discovery Today, 2015, 20, 536-547.	6.4	310
5	siRNA Delivery Strategies: A Comprehensive Review of Recent Developments. Nanomaterials, 2017, 7, 77.	4.1	298
6	PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomaterialia, 2016, 43, 14-29.	8.3	296
7	Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced Drug Delivery Reviews, 2013, 65, 1784-1802.	13.7	288
8	PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 2015, 18, 565-572.	14.2	219
9	Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discovery Today, 2017, 22, 314-326.	6.4	174
10	Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids and Surfaces B: Biointerfaces, 2015, 136, 413-423.	5.0	170
11	Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discovery Today, 2017, 22, 665-680.	6.4	165
12	Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Progress in Polymer Science, 2017, 64, 154-181.	24.7	150
13	Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma. BMC Cancer, 2009, 9, 399.	2.6	139
14	Advances in antibody–drug conjugates: A new era of targeted cancer therapy. Drug Discovery Today, 2017, 22, 1547-1556.	6.4	139
15	Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting. Biomacromolecules, 2017, 18, 1197-1209.	5.4	130
16	In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. Journal of Controlled Release, 2013, 172, 699-706.	9.9	128
17	Inhibition of ABCB1 (MDR1) Expression by an siRNA Nanoparticulate Delivery System to Overcome Drug Resistance in Osteosarcoma. PLoS ONE, 2010, 5, e10764.	2.5	128
18	Hyaluronic Acid Engineered Nanomicelles Loaded with 3,4-Difluorobenzylidene Curcumin for Targeted Killing of CD44+ Stem-Like Pancreatic Cancer Cells. Biomacromolecules, 2015, 16, 3042-3053.	5.4	127

#	Article	IF	CITATIONS
19	Multifunctional nanoparticles for cancer immunotherapy: A groundbreaking approach for reprogramming malfunctioned tumor environment. Journal of Controlled Release, 2018, 274, 24-34.	9.9	123
20	Combination of siRNA-directed Gene Silencing With Cisplatin Reverses Drug Resistance in Human Non-small Cell Lung Cancer. Molecular Therapy - Nucleic Acids, 2013, 2, e110.	5.1	113
21	Combinatorial-Designed Multifunctional Polymeric Nanosystems for Tumor-Targeted Therapeutic Delivery. Accounts of Chemical Research, 2011, 44, 1009-1017.	15.6	110
22	MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer. Scientific Reports, 2015, 5, 8509.	3.3	109
23	The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discovery Today, 2017, 22, 652-664.	6.4	108
24	Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discovery Today, 2018, 23, 300-314.	6.4	100
25	Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation. Journal of Drug Targeting, 2007, 15, 496-506.	4.4	99
26	Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. International Journal of Pharmaceutics, 2017, 529, 506-522.	5.2	95
27	High-loading nanosized micelles of copoly(styrene–maleic acid)–zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials, 2007, 28, 1871-1881.	11.4	91
28	Comprehensive review on various strategies for antimalarial drug discovery. European Journal of Medicinal Chemistry, 2017, 125, 1300-1320.	5.5	87
29	Moxifloxacin loaded gelatin nanoparticles for ocular delivery: Formulation and in - vitro , in - vivo evaluation. Journal of Colloid and Interface Science, 2016, 483, 132-138.	9.4	86
30	Parenterally administrable nano-micelles of 3,4-difluorobenzylidene curcumin for treating pancreatic cancer. Colloids and Surfaces B: Biointerfaces, 2015, 132, 138-145.	5.0	85
31	Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers, 2020, 12, 2793.	3.7	84
32	Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. Journal of Controlled Release, 2017, 253, 122-136.	9.9	82
33	Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids and Surfaces B: Biointerfaces, 2017, 157, 490-502.	5.0	81
34	Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach. International Journal of Pharmaceutics, 2017, 526, 506-515.	5.2	78
35	Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer. Pharmaceutical Research, 2015, 32, 2097-2109.	3.5	75
36	Dendrimer-mediated approaches for the treatment of brain tumor. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 557-580.	3.5	75

#	Article	IF	CITATIONS
37	Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids and Surfaces B: Biointerfaces, 2018, 167, 8-19.	5.0	75
38	Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation. Drug Discovery Today, 2019, 24, 462-491.	6.4	73
39	<i>In Vivo</i> Antitumor Activity of Folate-Conjugated Cholic Acid-Polyethylenimine Micelles for the Codelivery of Doxorubicin and siRNA to Colorectal Adenocarcinomas. Molecular Pharmaceutics, 2015, 12, 4247-4258.	4.6	69
40	PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33, 159-193.	2.2	69
41	pH Responsive 5-Fluorouracil Loaded Biocompatible Nanogels For Topical Chemotherapy of Aggressive Melanoma. Colloids and Surfaces B: Biointerfaces, 2019, 174, 232-245.	5.0	65
42	Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. Biomedical Optics Express, 2012, 3, 178.	2.9	64
43	Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discovery Today, 2021, 26, 1944-1952.	6.4	62
44	Solubility enhancement and targeted delivery of a potent anticancer flavonoid analogue to cancer cells using ligand decorated dendrimer nano-architectures. Journal of Colloid and Interface Science, 2016, 484, 33-43.	9.4	60
45	pH responsive biodegradable nanogels for sustained release of bleomycin. Bioorganic and Medicinal Chemistry, 2017, 25, 4595-4613.	3.0	59
46	Oxystress inducing antitumor therapeutics <i>via</i> tumorâ€ŧargeted delivery of PEG conjugated <scp>D</scp> â€ēmino acid oxidase. International Journal of Cancer, 2008, 122, 1135-1144.	5.1	57
47	Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials, 2018, 183, 280-294.	11.4	57
48	CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1441-1454.	3.3	53
49	Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. Journal of Colloid and Interface Science, 2017, 496, 290-299.	9.4	50
50	Nanomedicine for cancer diagnosis and therapy: advancement, success and structure–activity relationship. Therapeutic Delivery, 2017, 8, 1003-1018.	2.2	49
51	The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma. Biomaterials, 2011, 32, 2605-2613.	11.4	45
52	Nanodelivery Systems for Nucleic Acid Therapeutics in Drug Resistant Tumors. Molecular Pharmaceutics, 2014, 11, 2511-2526.	4.6	44
53	Dendrimers as an Effective Nanocarrier in Cardiovascular Disease. Current Pharmaceutical Design, 2015, 21, 4519-4526.	1.9	44
54	PDL-1 Antibody Drug Conjugate for Selective Chemo-Guided Immune Modulation of Cancer. Cancers, 2019, 11, 232.	3.7	43

#	Article	IF	CITATIONS
55	Cationic bovine serum albumin (CBA) conjugated poly lactic-co-glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumors. RSC Advances, 2016, 6, 89040-89050.	3.6	42
56	Transferrin: Biology and Use in Receptor-Targeted Nanotherapy of Gliomas. ACS Omega, 2021, 6, 8727-8733.	3.5	42
57	Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon, 2018, 4, e01071.	3.2	41
58	Styrene Maleic Acid-Pirarubicin Disrupts Tumor Microcirculation and Enhances the Permeability of Colorectal Liver Metastases. Journal of Vascular Research, 2009, 46, 218-228.	1.4	40
59	Lipid-functionalized Dextran Nanosystems to Overcome Multidrug Resistance in Cancer: A Pilot Study. Clinical Orthopaedics and Related Research, 2013, 471, 915-925.	1.5	37
60	Folate Decorated Nanomicelles Loaded with a Potent Curcumin Analogue for Targeting Retinoblastoma. Pharmaceutics, 2017, 9, 15.	4.5	35
61	Targeting Prostate Cancer Cells In Vivo Using a Rapidly Internalizing Novel Human Single-Chain Antibody Fragment. Journal of Nuclear Medicine, 2010, 51, 427-432.	5.0	33
62	Folate Receptors' Expression in Gliomas May Possess Potential Nanoparticle-Based Drug Delivery Opportunities. ACS Omega, 2021, 6, 4111-4118.	3.5	33
63	pH-Responsive Triblock Copolymeric Micelles Decorated with a Cell-Penetrating Peptide Provide Efficient Doxorubicin Delivery. Nanoscale Research Letters, 2016, 11, 539.	5.7	32
64	Combination of cationic dexamethasone derivative and STAT3 inhibitor (WP1066) for aggressive melanoma: a strategy for repurposing a phase I clinical trial drug. Molecular and Cellular Biochemistry, 2017, 436, 119-136.	3.1	30
65	Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discovery Today, 2021, 26, 31-43.	6.4	30
66	Radiolabeled Oligonucleotides for Antisense Imaging. Current Organic Synthesis, 2011, 8, 604-614.	1.3	28
67	Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discovery Today, 2020, 25, 718-730.	6.4	28
68	Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. Advanced Functional Materials, 2020, 30, 1910402.	14.9	28
69	SMA–copolymer conjugate of AHPP: A polymeric inhibitor of xanthine oxidase with potential antihypertensive effect. Journal of Controlled Release, 2009, 135, 211-217.	9.9	27
70	Copper-Free â€~Click' Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia. International Journal of Molecular Sciences, 2018, 19, 838.	4.1	27
71	Evaluation of the effect of SMA–pirarubicin micelles on colorectal cancer liver metastases and of hyperbaric oxygen in CBA mice. Journal of Drug Targeting, 2007, 15, 487-495.	4.4	25
72	Graphene Decorated Zinc Oxide and Curcumin to Disinfect the Methicillin-Resistant Staphylococcus aureus. Nanomaterials, 2020, 10, 1004.	4.1	25

#	Article	IF	CITATIONS
73	Multifunctional nanoparticles for targeting cancer and inflammatory diseases. Journal of Drug Targeting, 2013, 21, 888-903.	4.4	24
74	A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discovery Today, 2018, 23, 1344-1356.	6.4	24
75	pH triggered and charge attracted nanogel for simultaneous evaluation of penetration and toxicity against skin cancer: In-vitro and ex-vivo study. International Journal of Biological Macromolecules, 2019, 128, 740-751.	7.5	22
76	A CARP-1 functional mimetic loaded vitamin E-TPGS micellar nano-formulation for inhibition of renal cell carcinoma. Oncotarget, 2017, 8, 104928-104945.	1.8	22
77	Targeting of heat-shock protein 32/heme oxygenase-1 in canine mastocytoma cells is associated with reduced growth and induction of apoptosis. Experimental Hematology, 2008, 36, 1461-1470.	0.4	19
78	Novel Human Single Chain Antibody Fragments That Are Rapidly Internalizing Effectively Target Epithelioid and Sarcomatoid Mesotheliomas. Cancer Research, 2011, 71, 2428-2432.	0.9	18
79	LDL receptors and their role in targeted therapy for glioma: a review. Drug Discovery Today, 2021, 26, 1212-1225.	6.4	18
80	Combination of Vancomycin and Cefazolin Lipid Nanoparticles for Overcoming Antibiotic Resistance of MRSA. Materials, 2018, 11, 1245.	2.9	17
81	Nano-constructed Carriers Loaded With Antioxidant: Boon For Cardiovascular System. Current Pharmaceutical Design, 2015, 21, 4456-4464.	1.9	17
82	CD44 Targeted Nanomaterials for Treatment of Triple-Negative Breast Cancer. Cancers, 2021, 13, 898.	3.7	16
83	Tissue protective effect of xanthine oxidase inhibitor, polymer conjugate of (styrene–maleic acid) Tj ETQq1 1 injury. Experimental Biology and Medicine, 2010, 235, 487-496.	0.784314 2.4	rgBT /Overloo 15
84	Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor. Molecules, 2020, 25, 2362.	3.8	14
85	Molecular Docking Analysis of Caspase-3 Activators as Potential Anticancer Agents. Current Computer-Aided Drug Design, 2018, 15, 55-66.	1.2	13
86	Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer's disease. Drug Discovery Today, 2020, 25, 2110-2129.	6.4	12
87	Nanoâ€therapeutic strategies to target coronavirus. View, 2021, 2, 20200155.	5.3	11
88	A CARP-1 functional mimetic compound is synergistic with BRAF-targeting in non-small cell lung cancers. Oncotarget, 2018, 9, 29680-29697.	1.8	11
89	Polymeric microspheres: a delivery system for osteogenic differentiation. Polymers for Advanced Technologies, 2017, 28, 1595-1609.	3.2	10
90	An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis. Journal of Molecular Graphics and Modelling, 2018, 83, 17-32.	2.4	9

#	Article	IF	CITATIONS
91	Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. Advanced Therapeutics, 2021, 4, 2000262.	3.2	9
92	Folate Functionalized Lipid Nanoparticles for Targeted Therapy of Methicillin-Resistant Staphylococcus aureus. Pharmaceutics, 2021, 13, 1791.	4.5	9
93	Discovering pH triggered charge rebound surface modulated topical nanotherapy against aggressive skin papilloma. Materials Science and Engineering C, 2020, 107, 110263.	7.3	8
94	Comparison of Tau and Amyloid-β Targeted Immunotherapy Nanoparticles for Alzheimer's Disease. Biomolecules, 2022, 12, 1001.	4.0	7
95	Multiple strategies for the treatment of invasive breast carcinoma: A comprehensive prospective. Drug Discovery Today, 2022, 27, 585-611.	6.4	6
96	Immunotherapy and molecular role of T-cell in PD-1 antibody treated resectable lung cancer patients. Journal of Thoracic Disease, 2018, 10, 4682-4685.	1.4	5
97	Multifunctional Stimuli–Responsive Nanoparticles for Targeted Delivery of Small and Macromolecular Therapeutics. , 2010, , 555-585.		4
98	Nanogels: A New Dawn in Antimicrobial Chemotherapy. , 2017, , 101-137.		3
99	Nanomaterials for tumor immunomodulation and overcoming current clinical challenges. Nanomedicine, 2019, 14, 1515-1519.	3.3	3
100	A Biomimetic Drug Delivery System Targeting Tumor Hypoxia in Triple-Negative Breast Cancers. Applied Sciences (Switzerland), 2020, 10, 1075.	2.5	3
101	Nanoparticles for Immune Cell Reprogramming and Reengineering of Tumor Microenvironment. Methods in Molecular Biology, 2020, 2097, 211-221.	0.9	3
102	Bioinspired hyaluronic acid based nanofibers immobilized with 3, 4- difluorobenzylidene curcumin for treating bacterial infections. Journal of Drug Delivery Science and Technology, 2022, 74, 103480.	3.0	3
103	Combined phased-array ultrasound and photoacoustic endoscope for gynecologic cancer imaging applications. , 2018, , .		2
104	Polymeric Nanosystems for Integrated Image-Guided Cancer Therapy. Frontiers in Nanobiomedical Research, 2014, , 199-233.	0.1	1
105	Image-Guided Delivery of Therapeutics to the Brain. Advances in Delivery Science and Technology, 2015, , 151-177.	0.4	1
106	Comparing and Contrasting MERS, SARS-CoV, and SARS-CoV-2: Prevention, Transmission, Management, and Vaccine Development. Pathogens, 2020, 9, 985.	2.8	1
107	Imaging the cellular components of the immune system for advancing diagnosis and immunotherapy of cancers. Materials Today Advances, 2021, 10, 100138.	5.2	1
108	Abstract 3526: Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. , 2010, , .		1

#	Article	lF	CITATIONS
109	Nanomedicine for overcoming therapeutic and diagnostic challenges associated with pancreatic cancer. Drug Discovery Today, 2022, , .	6.4	1
110	RISK OF HEART FAILURE IN SYSTEMIC SCLEROSIS. Journal of the American College of Cardiology, 2017, 69, 800.	2.8	0
111	RED CELL DISTRIBUTION WIDTH (RDW) PREDICTS MAJOR ADVERSE CARDIAC EVENTS IN SYSTEMIC LUPUS ERYTHEMATOSUS. Journal of the American College of Cardiology, 2017, 69, 1806.	2.8	0
112	Imaging tools to enhance animal tumor models for cancer research and drug discovery. , 2019, , 75-106.		0
113	Polymeric Nanoparticles as Target-Specific Delivery Systems. , 2011, , 81-130.		0
114	Nano-Platforms for Tumor-Targeted Delivery of Nucleic Acid Therapies. Advances in Delivery Science and Technology, 2014, , 269-291.	0.4	0
115	Exploring siRNA Umpired Nanogels: A Tale of Barrier Combating Carrier. Current Pharmaceutical Design, 2020, 26, 3234-3250.	1.9	Ο