List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. Journal of Physical Chemistry B, 2004, 108, 17886-17892.	1.2	8,672
2	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355, .	6.0	7,837
3	Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999, 59, 7413-7421.	1.1	6,206
4	Trends in the Exchange Current for Hydrogen Evolution. Journal of the Electrochemical Society, 2005, 152, J23.	1.3	4,054
5	Biomimetic Hydrogen Evolution:Â MoS2Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society, 2005, 127, 5308-5309.	6.6	3,497
6	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 2006, 5, 909-913.	13.3	3,305
7	Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011, 3, 1159-1165.	1.8	3,208
8	Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1, 37-46.	6.6	3,184
9	Why gold is the noblest of all the metals. Nature, 1995, 376, 238-240.	13.7	2,902
10	Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1, 552-556.	6.6	2,716
11	Progress and Perspectives of Electrochemical CO ₂ Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 2019, 119, 7610-7672.	23.0	2,708
12	How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy and Environmental Science, 2010, 3, 1311.	15.6	2,682
13	Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007, 607, 83-89.	1.9	2,277
14	Electronic factors determining the reactivity of metal surfaces. Surface Science, 1995, 343, 211-220.	0.8	2,087
15	Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials, 2016, 15, 48-53.	13.3	2,021
16	The Active Site of Methanol Synthesis over Cu/ZnO/Al ₂ O ₃ Industrial Catalysts. Science, 2012, 336, 893-897.	6.0	2,018
17	Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society, 2015, 137, 1305-1313.	6.6	2,018
18	Effect of Strain on the Reactivity of Metal Surfaces. Physical Review Letters, 1998, 81, 2819-2822.	2.9	2,001

#	Article	IF	CITATIONS
19	Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angewandte Chemie - International Edition, 2006, 45, 2897-2901.	7.2	1,685
20	Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chemical Reviews, 2018, 118, 2302-2312.	23.0	1,666
21	Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 937-943.	3.3	1,644
22	A highly active and stable IrO <i> _x </i> /SrIrO ₃ catalyst for the oxygen evolution reaction. Science, 2016, 353, 1011-1014.	6.0	1,606
23	Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Journal of Physics Condensed Matter, 2010, 22, 253202.	0.7	1,451
24	Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 2005, 319, 178-184.	0.9	1,383
25	The BrÃ,nsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. Journal of Catalysis, 2004, 224, 206-217.	3.1	1,348
26	Atomic-scale imaging of carbon nanofibre growth. Nature, 2004, 427, 426-429.	13.7	1,318
27	CO Chemisorption at Metal Surfaces and Overlayers. Physical Review Letters, 1996, 76, 2141-2144.	2.9	1,293
28	From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328, 36-42.	3.1	1,271
29	Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces. Physical Review Letters, 2007, 99, 016105.	2.9	1,270
30	Activity Descriptors for CO ₂ Electroreduction to Methane on Transition-Metal Catalysts. Journal of Physical Chemistry Letters, 2012, 3, 251-258.	2.1	1,250
31	Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces. Physical Review Letters, 2004, 93, 156801.	2.9	1,224
32	A theoretical evaluation of possible transition metal electro-catalysts for N ₂ reduction. Physical Chemistry Chemical Physics, 2012, 14, 1235-1245.	1.3	1,184
33	Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. Journal of Chemical Physics, 2004, 120, 10240-10246.	1.2	1,181
34	Universality in Heterogeneous Catalysis. Journal of Catalysis, 2002, 209, 275-278.	3.1	1,167
35	Surface electronic structure and reactivity of transition and noble metals1Communication presented at the First Francqui Colloquium, Brussels, 19–20 February 1996.1. Journal of Molecular Catalysis A, 1997, 115, 421-429.	4.8	1,166
36	Materials for solar fuels and chemicals. Nature Materials, 2017, 16, 70-81.	13.3	1,163

#	Article	IF	CITATIONS
37	On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. Journal of Catalysis, 2004, 223, 232-235.	3.1	1,122
38	High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 2018, 1, 156-162.	16.1	1,120
39	Ammonia Synthesis from First-Principles Calculations. Science, 2005, 307, 555-558.	6.0	1,109
40	Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society, 2013, 135, 13521-13530.	6.6	1,093
41	Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Physical Review B, 2012, 85, .	1.1	1,087
42	Catalytic activity of Au nanoparticles. Nano Today, 2007, 2, 14-18.	6.2	1,025
43	The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. ChemSusChem, 2015, 8, 2180-2186.	3.6	1,018
44	A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570, 504-508.	13.7	1,006
45	Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2012, 3, 997-1001.	2.1	992
46	Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. Journal of Physical Chemistry C, 2010, 114, 18182-18197.	1.5	990
47	Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene. Science, 2008, 320, 1320-1322.	6.0	984
48	Steam Reforming and Graphite Formation on Ni Catalysts. Journal of Catalysis, 2002, 209, 365-384.	3.1	980
49	Ammonia for hydrogen storage: challenges and opportunities. Journal of Materials Chemistry, 2008, 18, 2304.	6.7	966
50	Design of a Surface Alloy Catalyst for Steam Reforming. Science, 1998, 279, 1913-1915.	6.0	951
51	ELECTRONICSTRUCTURE ANDCATALYSIS ONMETALSURFACES. Annual Review of Physical Chemistry, 2002, 53, 319-348.	4.8	906
52	Surface segregation energies in transition-metal alloys. Physical Review B, 1999, 59, 15990-16000.	1.1	902
53	Oxygen Vacancies as Active Sites for Water Dissociation on RutileTiO2(110). Physical Review Letters, 2001, 87, 266104.	2.9	884
54	Interatomic interactions in the effective-medium theory. Physical Review B, 1987, 35, 7423-7442.	1.1	868

#	Article	IF	CITATIONS
55	Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry, 2014, 6, 320-324.	6.6	865
56	Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy and Environmental Science, 2015, 8, 3022-3029.	15.6	851
57	Atomic-Scale Structure of Single-LayerMoS2Nanoclusters. Physical Review Letters, 2000, 84, 951-954.	2.9	801
58	Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions, 2008, 140, 219-231.	1.6	732
59	Catalytic CO Oxidation by a Gold Nanoparticle:  A Density Functional Study. Journal of the American Chemical Society, 2002, 124, 11262-11263.	6.6	718
60	Role of Steps inN2Activation on Ru(0001). Physical Review Letters, 1999, 83, 1814-1817.	2.9	706
61	The nature of the active site in heterogeneous metal catalysis. Chemical Society Reviews, 2008, 37, 2163.	18.7	703
62	Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catalysis, 2017, 7, 706-709.	5.5	689
63	Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Physical Chemistry Chemical Physics, 2007, 9, 3241-3250.	1.3	678
64	Tuning the MoS ₂ Edge-Site Activity for Hydrogen Evolution via Support Interactions. Nano Letters, 2014, 14, 1381-1387.	4.5	660
65	The CO/Pt(111) Puzzle. Journal of Physical Chemistry B, 2001, 105, 4018-4025.	1.2	642
66	Making gold less noble. Catalysis Letters, 2000, 64, 101-106.	1.4	641
67	Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catalysis, 2017, 7, 4822-4827.	5.5	637
68	Catalyst Design by Interpolation in the Periodic Table:Â Bimetallic Ammonia Synthesis Catalysts. Journal of the American Chemical Society, 2001, 123, 8404-8405.	6.6	631
69	Theoretical Insights into a CO Dimerization Mechanism in CO ₂ Electroreduction. Journal of Physical Chemistry Letters, 2015, 6, 2032-2037.	2.1	606
70	Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO ₂ Reduction to CO. Journal of Physical Chemistry Letters, 2013, 4, 388-392.	2.1	604
71	Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Materials, 2011, 10, 434-438.	13.3	600
72	Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nature Catalysis, 2018, 1, 111-119.	16.1	600

#	Article	IF	CITATIONS
73	Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Research, 2015, 8, 566-575.	5.8	594
74	Hydrogen and synthesis gas by steam- and CO2 reforming. Advances in Catalysis, 2002, 47, 65-139.	0.1	593
75	Oxidation and Photo-Oxidation of Water on TiO ₂ Surface. Journal of Physical Chemistry C, 2008, 112, 9872-9879.	1.5	587
76	The BrĄ̃nsted–Evans–Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts. Journal of Catalysis, 2001, 197, 229-231.	3.1	582
77	The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Physical Chemistry Chemical Physics, 2012, 14, 76-81.	1.3	576
78	One-Dimensional Metallic Edge States inMoS2. Physical Review Letters, 2001, 87, 196803.	2.9	563
79	First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. Journal of Catalysis, 2008, 259, 147-160.	3.1	559
80	Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nature Communications, 2017, 8, 15113.	5.8	555
81	Electrochemical Activation of CO ₂ through Atomic Ordering Transformations of AuCu Nanoparticles. Journal of the American Chemical Society, 2017, 139, 8329-8336.	6.6	529
82	Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nature Communications, 2019, 10, 3997.	5.8	528
83	Understanding trends in electrochemical carbon dioxide reduction rates. Nature Communications, 2017, 8, 15438.	5.8	527
84	Ligand effects in heterogeneous catalysis and electrochemistry. Electrochimica Acta, 2007, 52, 5512-5516.	2.6	513
85	Direct and continuous strain control of catalysts with tunable battery electrode materials. Science, 2016, 354, 1031-1036.	6.0	512
86	Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. Journal of Chemical Physics, 2011, 135, 214704.	1.2	502
87	The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochimica Acta, 2010, 55, 7975-7981.	2.6	491
88	Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Physical Chemistry Chemical Physics, 2008, 10, 3722.	1.3	480
89	Oxygen chemisorption on metal surfaces: General trends for Cu, Ni and Ag. Progress in Surface Science, 1993, 44, 5-66.	3.8	457
90	Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces. ACS Catalysis, 2012, 2, 1654-1660.	5.5	456

#	Article	IF	CITATIONS
91	Effective-medium theory of chemical binding: Application to chemisorption. Physical Review B, 1980, 21, 2131-2136.	1.1	455
92	Ligand and ensemble effects in adsorption on alloy surfaces. Physical Chemistry Chemical Physics, 2001, 3, 3814-3818.	1.3	455
93	Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces. Catalysis Letters, 1997, 46, 31-35.	1.4	453
94	Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surface Science, 2011, 605, 1354-1359.	0.8	445
95	Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the3dmetals. Physical Review B, 1982, 26, 2875-2885.	1.1	433
96	Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. Journal of Catalysis, 2007, 249, 220-233.	3.1	428
97	Active edge sites in MoSe ₂ and WSe ₂ catalysts for the hydrogen evolution reaction: a density functional study. Physical Chemistry Chemical Physics, 2014, 16, 13156-13164.	1.3	426
98	The Mechanism of CO and CO ₂ Hydrogenation to Methanol over Cuâ€Based Catalysts. ChemCatChem, 2015, 7, 1105-1111.	1.8	424
99	Quantized conductance in an atom-sized point contact. Physical Review Letters, 1994, 72, 2251-2254.	2.9	414
100	Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. Journal of Catalysis, 2008, 255, 6-19.	3.1	411
101	Electric Field Effects in Electrochemical CO ₂ Reduction. ACS Catalysis, 2016, 6, 7133-7139.	5.5	411
102	Toward Efficient Hydrogen Production at Surfaces. Science, 2006, 312, 1322-1323.	6.0	407
103	Insights into the reactivity of supported Au nanoparticles: combining theory and experiments. Topics in Catalysis, 2007, 44, 15-26.	1.3	402
104	Hydrogen adsorption on metal surfaces. Surface Science, 1984, 136, 59-81.	0.8	400
105	To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nature Communications, 2017, 8, 14621.	5.8	399
106	A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surface Science, 2015, 640, 36-44.	0.8	396
107	DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization Catalysts. Journal of Catalysis, 1999, 187, 109-122.	3.1	393
108	Phase diagrams for surface alloys. Physical Review B, 1997, 56, 5822-5834.	1.1	391

#	Article	IF	CITATIONS
109	Calculated Phase Diagrams for the Electrochemical Oxidation and Reduction of Water over Pt(111). Journal of Physical Chemistry B, 2006, 110, 21833-21839.	1.2	388
110	Effects of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi>-band shape on the surface reactivity of transition-metal alloys. Physical Review B, 2014, 89, .</mml:math 	1.1	387
111	Understanding trends in C–H bond activation in heterogeneous catalysis. Nature Materials, 2017, 16, 225-229.	13.3	387
112	Dependence of the He-Scattering Potential at Surfaces on the Surface-Electron-Density Profile. Physical Review Letters, 1980, 45, 807-810.	2.9	386
113	CO Oxidation on Rutile-Supported Au Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 1824-1826.	7.2	381
114	Trends in the Catalytic CO Oxidation Activity of Nanoparticles. Angewandte Chemie - International Edition, 2008, 47, 4835-4839.	7.2	381
115	Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. Journal of Catalysis, 2004, 221, 510-522.	3.1	379
116	Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Physical Chemistry Chemical Physics, 2014, 16, 4720.	1.3	375
117	Towards an ammonia-mediated hydrogen economy?. Catalysis Today, 2006, 111, 140-144.	2.2	372
118	Electrostatic adsorbate-adsorbate interactions: The poisoning and promotion of the molecular adsorption reaction. Surface Science, 1985, 150, 24-38.	0.8	371
119	pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nature Communications, 2019, 10, 32.	5.8	371
120	Secondary-ion emission probability in sputtering. Physical Review B, 1979, 19, 5661-5665.	1.1	370
121	Exploring the limits: A low-pressure, low-temperature Haber–Bosch process. Chemical Physics Letters, 2014, 598, 108-112.	1.2	369
122	Bonding of Gold Nanoclusters to Oxygen Vacancies on RutileTiO2(110). Physical Review Letters, 2003, 90, 026101.	2.9	367
123	Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. Journal of Chemical Physics, 2010, 132, 071101.	1.2	367
124	Universal transition state scaling relations for (de)hydrogenation over transition metals. Physical Chemistry Chemical Physics, 2011, 13, 20760.	1.3	363
125	Atomic and electronic structure of MoS2nanoparticles. Physical Review B, 2003, 67, .	1.1	352
126	Hydrogen Evolution Over Bimetallic Systems: Understanding the Trends. ChemPhysChem, 2006, 7, 1032-1035.	1.0	351

#	Article	IF	CITATIONS
127	The electronic structure effect in heterogeneous catalysis. Catalysis Letters, 2005, 100, 111-114.	1.4	349
128	Modeling the electrified solid–liquid interface. Chemical Physics Letters, 2008, 466, 68-71.	1.2	349
129	Optimizing Perovskites for the Water-Splitting Reaction. Science, 2011, 334, 1355-1356.	6.0	349
130	Ammonia synthesis from N ₂ and H ₂ O using a lithium cycling electrification strategy at atmospheric pressure. Energy and Environmental Science, 2017, 10, 1621-1630.	15.6	342
131	Insights into CC Coupling in CO ₂ Electroreduction on Copper Electrodes. ChemCatChem, 2013, 5, 737-742.	1.8	339
132	Unifying Kinetic and Thermodynamic Analysis of 2 e [–] and 4 e [–] Reduction of Oxygen on Metal Surfaces. Journal of Physical Chemistry C, 2014, 118, 6706-6718.	1.5	337
133	Multidimensional Potential Energy Surface forH2Dissociation over Cu(111). Physical Review Letters, 1994, 73, 1400-1403.	2.9	334
134	Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nature Communications, 2017, 8, 701.	5.8	333
135	Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Physical Chemistry Chemical Physics, 2012, 14, 14010.	1.3	332
136	Anode Materials for Low-Temperature Fuel Cells: A Density Functional Theory Study. Journal of Catalysis, 2001, 199, 123-131.	3.1	330
137	CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends. Catalysis Letters, 2015, 145, 794-807.	1.4	328
138	Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochimica Acta, 2007, 52, 5829-5836.	2.6	326
139	Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. CheM, 2017, 3, 950-960.	5.8	326
140	Initial growth of Au on Ni(110): Surface alloying of immiscible metals. Physical Review Letters, 1993, 71, 754-757.	2.9	325
141	Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Communications, 2013, 4, .	5.8	325
142	Microscopic model for the poisoning and promotion of adsorption rates by electronegative and electropositive atoms. Surface Science, 1984, 137, 65-78.	0.8	320
143	Assessing the reliability of calculated catalytic ammonia synthesis rates. Science, 2014, 345, 197-200.	6.0	319
144	Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surface Science, 2015, 640, 133-140.	0.8	315

#	Article	IF	CITATIONS
145	Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts. Journal of Catalysis, 2006, 239, 501-506.	3.1	314
146	Chemisorption on metal surfaces. Reports on Progress in Physics, 1990, 53, 1253-1295.	8.1	313
147	Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid. ChemSusChem, 2016, 9, 358-363.	3.6	311
148	Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2018, 140, 7851-7859.	6.6	310
149	Electrochemical Barriers Made Simple. Journal of Physical Chemistry Letters, 2015, 6, 2663-2668.	2.1	309
150	Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy. Journal of Catalysis, 2004, 224, 94-106.	3.1	308
151	Quantized conductance in atom-sized wires between two metals. Physical Review B, 1995, 52, 8499-8514.	1.1	307
152	Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides. Journal of Physical Chemistry C, 2012, 116, 21077-21082.	1.5	305
153	Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catalysis, 2018, 8, 7445-7454.	5.5	305
154	Trends in the chemical properties of early transition metal carbide surfaces: A density functional study. Catalysis Today, 2005, 105, 66-73.	2.2	302
155	Scaling Relationships for Adsorption Energies on Transition Metal Oxide, Sulfide, and Nitride Surfaces. Angewandte Chemie - International Edition, 2008, 47, 4683-4686.	7.2	301
156	Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO ₂ Reduction. ACS Catalysis, 2017, 7, 6600-6608.	5.5	300
157	Bridging the "Pressure Gap" between Ultrahigh-Vacuum Surface Physics and High-Pressure Catalysis. Physical Review Letters, 1985, 55, 2502-2505.	2.9	288
158	Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochimica Acta, 2003, 48, 3731-3742.	2.6	285
159	New design paradigm for heterogeneous catalysts. National Science Review, 2015, 2, 140-143.	4.6	280
160	Unifying the 2e [–] and 4e [–] Reduction of Oxygen on Metal Surfaces. Journal of Physical Chemistry Letters, 2012, 3, 2948-2951.	2.1	276
161	Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and BrÃ,nstedâ~'Evansâ~'Polanyi Relations. Journal of the American Chemical Society, 2009, 131, 5809-5815.	6.6	275
162	Effect of strain on surface diffusion and nucleation. Physical Review B, 1995, 52, R14380-R14383.	1.1	274

#	Article	IF	CITATIONS
163	Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catalysis Today, 2008, 130, 86-96.	2.2	265
164	Universal BrÃ,nsted-Evans-Polanyi Relations for C–C, C–O, C–N, N–O, N–N, and O–O Dissociation Reactions. Catalysis Letters, 2011, 141, 370-373.	1.4	265
165	Sintering of nickel steam-reforming catalysts: effects of temperature and steam and hydrogen pressures. Journal of Catalysis, 2004, 223, 432-443.	3.1	264
166	Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nature Materials, 2005, 4, 160-162.	13.3	263
167	A theoretical study of CH4 dissociation on pure and goldâ€elloyed Ni(111) surfaces. Journal of Chemical Physics, 1996, 105, 5595-5604.	1.2	262
168	Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Physical Chemistry Chemical Physics, 2007, 9, 5158.	1.3	260
169	Ammonia synthesis over a Ru(0001) surface studied by density functional calculations. Journal of Catalysis, 2003, 220, 273-279.	3.1	259
170	How a gold substrate can increase the reactivity of a Pt overlayer. Surface Science, 1999, 426, 395-409.	0.8	258
171	Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO ₂ Reduction. ChemCatChem, 2014, 6, 1899-1905.	1.8	255
172	Kinetic Implications of Dynamical Changes in Catalyst Morphology during Methanol Synthesis over Cu/ZnO Catalysts. Journal of Catalysis, 1997, 168, 133-142.	3.1	254
173	How Doped MoS ₂ Breaks Transition-Metal Scaling Relations for CO ₂ Electrochemical Reduction. ACS Catalysis, 2016, 6, 4428-4437.	5.5	254
174	The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study. Journal of Catalysis, 2007, 248, 188-203.	3.1	253
175	Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters. Journal of Physical Chemistry Letters, 2013, 4, 222-226.	2.1	249
176	Combined Electronic Structure and Evolutionary Search Approach to Materials Design. Physical Review Letters, 2002, 88, 255506.	2.9	248
177	Mechanisms for catalytic carbon nanofiber growth studied byab initiodensity functional theory calculations. Physical Review B, 2006, 73, .	1.1	248
178	A kinetic model of the water gas shift reaction. Journal of Catalysis, 1992, 134, 445-468.	3.1	244
179	Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces. Journal of Physical Chemistry C, 2009, 113, 10548-10553.	1.5	244
180	The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst. Journal of Catalysis, 2004, 225, 86-94.	3.1	240

#	Article	IF	CITATIONS
181	A Kinetic Model of Methanol Synthesis. Journal of Catalysis, 1995, 156, 229-242.	3.1	239
182	Electronic Structure Effects in Transition Metal Surface Chemistry. Topics in Catalysis, 2014, 57, 25-32.	1.3	238
183	Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 311-317.	3.2	236
184	Finite Size Effects in Chemical Bonding: From Small Clusters to Solids. Catalysis Letters, 2011, 141, 1067-1071.	1.4	234
185	One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H ₂ O ₂ Evolution. Journal of Physical Chemistry Letters, 2017, 8, 1157-1160.	2.1	234
186	CO methanation over supported bimetallic Ni–Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A: General, 2007, 320, 98-104.	2.2	233
187	Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2. Catalysis Letters, 1994, 26, 373-381.	1.4	231
188	High Throughput Experimental and Theoretical Predictive Screening of Materials â^' A Comparative Study of Search Strategies for New Fuel Cell Anode Catalysts. Journal of Physical Chemistry B, 2003, 107, 11013-11021.	1.2	231
189	Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. Journal of Catalysis, 2005, 230, 309-312.	3.1	229
190	Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2009, 113, 4932-4939.	1.5	229
191	Methane activation on Ni(111): Effects of poisons and step defects. Surface Science, 2005, 590, 127-137.	0.8	228
192	Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis. Applied Catalysis A: General, 2001, 222, 19-29.	2.2	225
193	CO-CO coupling on Cu facets: Coverage, strain and field effects. Surface Science, 2016, 654, 56-62.	0.8	223
194	On the Role of Surface Modifications of Palladium Catalysts in the Selective Hydrogenation of Acetylene. Angewandte Chemie - International Edition, 2008, 47, 9299-9302.	7.2	222
195	Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature, 1999, 398, 134-136.	13.7	221
196	Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt. Catalysis Letters, 2011, 141, 909-913.	1.4	219
197	Adsorption and Dissociation ofH2on Mg Surfaces. Physical Review Letters, 1981, 46, 257-260.	2.9	218
198	A Microkinetic Analysis of the Water–Gas Shift Reaction under Industrial Conditions. Journal of Catalysis, 1996, 158, 170-180.	3.1	218

#	Article	IF	CITATIONS
199	Steady state oxygenreduction and cyclic voltammetry. Faraday Discussions, 2008, 140, 337-346.	1.6	218
200	Ammonia synthesis at low temperatures. Journal of Chemical Physics, 2000, 112, 5343-5347.	1.2	217
201	On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces. Journal of Catalysis, 2013, 307, 275-282.	3.1	217
202	Potential Dependence of Electrochemical Barriers from ab Initio Calculations. Journal of Physical Chemistry Letters, 2016, 7, 1686-1690.	2.1	213
203	Chemistry of one-dimensional metallic edge states in MoS2nanoclusters. Nanotechnology, 2003, 14, 385-389.	1.3	212
204	Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. Journal of Chemical Physics, 2013, 138, 034703.	1.2	211
205	Direct Methane to Methanol: The Selectivity–Conversion Limit and Design Strategies. ACS Catalysis, 2018, 8, 6894-6907.	5.5	211
206	Disordering and Melting of Aluminum Surfaces. Physical Review Letters, 1988, 61, 440-443.	2.9	210
207	Theoretical Analysis of Transition-Metal Catalysts for Formic Acid Decomposition. ACS Catalysis, 2014, 4, 1226-1233.	5.5	209
208	Theoretical analysis of hydrogen chemisorption on Pd(111), Re(0001) andPdML/Re(0001),ReML/Pd(111)pseudomorphic overlayers. Physical Review B, 1999, 60, 6146-6154.	1.1	207
209	A semi-empirical effective medium theory for metals and alloys. Surface Science, 1996, 366, 394-402.	0.8	205
210	Atomic and molecular adsorption on Rh(111). Journal of Chemical Physics, 2002, 117, 6737-6744.	1.2	204
211	Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals. Topics in Catalysis, 2010, 53, 298-310.	1.3	204
212	A Comparative Theoretical Study of the Hydrogen, Methyl, and Ethyl Chemisorption on the Pt(111) Surface. Journal of the American Chemical Society, 2000, 122, 4129-4144.	6.6	198
213	Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. Physical Chemistry Chemical Physics, 2012, 14, 49-70.	1.3	198
214	CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. Journal of Catalysis, 2012, 293, 51-60.	3.1	195
215	Probing the transition state region in catalytic CO oxidation on Ru. Science, 2015, 347, 978-982.	6.0	193
216	Predicting Catalysis:Â Understanding Ammonia Synthesis from First-Principles Calculations. Journal of Physical Chemistry B, 2006, 110, 17719-17735.	1.2	192

#	Article	IF	CITATIONS
217	A negative surface energy for alumina. Nature Materials, 2004, 3, 289-293.	13.3	191
218	Cyclic Voltammograms for H on Pt(111) and Pt(100) from First Principles. Physical Review Letters, 2007, 99, 126101.	2.9	189
219	Theoretical Studies of Stability and Reactivity of CHx Species on Ni(111). Journal of Catalysis, 2000, 189, 16-30.	3.1	187
220	Alkali Promotion of N2Dissociation over Ru(0001). Physical Review Letters, 1998, 80, 4333-4336.	2.9	185
221	Structure and Reactivity of Niâ^'Au Nanoparticle Catalysts. Journal of Physical Chemistry B, 2001, 105, 5450-5458.	1.2	183
222	Real-Time Observation of Surface Bond Breaking with an X-ray Laser. Science, 2013, 339, 1302-1305.	6.0	179
223	Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C ₂₊ Oxygenate Production. Journal of the American Chemical Society, 2016, 138, 3705-3714.	6.6	179
224	CO oxidation on gold nanoparticles: Theoretical studies. Applied Catalysis A: General, 2005, 291, 13-20.	2.2	178
225	ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. ACS Catalysis, 2019, 9, 4593-4599.	5.5	176
226	Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts. Journal of the American Chemical Society, 2008, 130, 8660-8668.	6.6	174
227	Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO ₂ (110). Journal of Physical Chemistry C, 2017, 121, 11455-11463.	1.5	174
228	Activity and Selectivity Trends in Synthesis Gas Conversion to Higher Alcohols. Topics in Catalysis, 2014, 57, 135-142.	1.3	173
229	Monocopper Active Site for Partial Methane Oxidation in Cu-Exchanged 8MR Zeolites. ACS Catalysis, 2016, 6, 6531-6536.	5.5	173
230	Island Shape-Induced Transition from 2D to 3D Growth for Pt/Pt(111). Physical Review Letters, 1995, 74, 2295-2298.	2.9	171
231	Role of nonlocal exchange correlation in activated adsorption. Physical Review Letters, 1993, 70, 3971-3974.	2.9	170
232	A Density Functional Study of the Chemical Differences between Type I and Type II MoS2-Based Structures in Hydrotreating Catalystsâ€. Journal of Physical Chemistry B, 2005, 109, 2245-2253.	1.2	170
233	The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions: An Electrochemical Impedance Spectroscopy Study. Langmuir, 2011, 27, 2058-2066.	1.6	170
234	Theoretical Trends in Particle Size Effects for the Oxygen Reduction Reaction. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1209-1220.	1.4	169

#	Article	IF	CITATIONS
235	Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO ₂ (110) by Transitionâ€Metal Substitution. ChemCatChem, 2011, 3, 1607-1611.	1.8	169
236	A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surface Science, 2005, 592, 104-111.	0.8	168
237	Metal ammine complexes for hydrogen storage. Journal of Materials Chemistry, 2005, 15, 4106.	6.7	166
238	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Đerived Copper. Angewandte Chemie - International Edition, 2016, 55, 1450-1454.	7.2	166
239	Theoretical description of molecule-metal interaction and surface reactions. Surface Science, 1979, 89, 196-225.	0.8	165
240	Selective and Efficient Gd-Doped BiVO ₄ Photoanode for Two-Electron Water Oxidation to H ₂ O ₂ . ACS Energy Letters, 2019, 4, 720-728.	8.8	165
241	Bayesian Error Estimation in Density-Functional Theory. Physical Review Letters, 2005, 95, 216401.	2.9	163
242	Photon and electron emission as indicators of intermediate states in surface reactions. Surface Science, 1979, 89, 554-565.	0.8	160
243	Large-scale, density functional theory-based screening of alloys for hydrogen evolution. Surface Science, 2007, 601, 1590-1598.	0.8	160
244	Atomic-Scale Determination of Misfit Dislocation Loops at Metal-Metal Interfaces. Physical Review Letters, 1995, 75, 489-492.	2.9	158
245	Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H ₂ O ₂ . Reaction Chemistry and Engineering, 2017, 2, 239-245.	1.9	157
246	Quantum Motion of Chemisorbed Hydrogen on Ni Surfaces. Physical Review Letters, 1983, 51, 1081-1084.	2.9	156
247	Tunneling and Polaron Charge Transport through Li ₂ O ₂ in Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2013, 4, 3494-3499.	2.1	156
248	Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nature Catalysis, 2021, 4, 463-468.	16.1	156
249	Theory of hydrogen interaction with metals. Journal of the Less Common Metals, 1987, 130, 475-490.	0.9	155
250	Structure Sensitivity of CO Dissociation on Rh Surfaces. Catalysis Letters, 2002, 81, 153-156.	1.4	153
251	The Computational Materials Repository. Computing in Science and Engineering, 2012, 14, 51-57.	1.2	153
252	Li–O ₂ Kinetic Overpotentials: Tafel Plots from Experiment and First-Principles Theory. Journal of Physical Chemistry Letters, 2013, 4, 556-560.	2.1	153

#	Article	IF	CITATIONS
253	Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models. ACS Catalysis, 2019, 9, 920-931.	5.5	153
254	Wetting/ non-wetting phenomena during catalysis: Evidence from in situ on-line EXAFS studies of Cu-based catalysts. Topics in Catalysis, 1994, 1, 367-376.	1.3	152
255	Rational design of MoS ₂ catalysts: tuning the structure and activity via transition metal doping. Catalysis Science and Technology, 2015, 5, 246-253.	2.1	152
256	Self-diffusion on copper surfaces. Physical Review B, 1991, 44, 6523-6526.	1.1	151
257	Theory of the oxygen-induced restructuring of Cu(110) and Cu(100) surfaces. Physical Review Letters, 1990, 65, 1788-1791.	2.9	150
258	Nitrogen Adsorption and Dissociation on Fe(111). Journal of Catalysis, 1999, 182, 479-488.	3.1	150
259	On the Compensation Effect in Heterogeneous Catalysis. Journal of Physical Chemistry B, 2003, 107, 9325-9331.	1.2	150
260	Molecular orbital description of surface chemiluminescence. Surface Science, 1979, 80, 179-188.	0.8	149
261	CO and CO2 Hydrogenation to Methanol Calculated Using the BEEF-vdW Functional. Catalysis Letters, 2013, 143, 71-73.	1.4	148
262	Sulfur bonding in MoS2 and Co-Mo-S structures. Catalysis Letters, 1997, 47, 177-182.	1.4	146
263	The stability of the hydroxylated (0001) surface of α-Al2O3. Journal of Chemical Physics, 2003, 118, 11179-11188.	1.2	146
264	The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts. Catalysis Today, 2005, 107-108, 12-22.	2.2	145
265	Strategies toward Selective Electrochemical Ammonia Synthesis. ACS Catalysis, 2019, 9, 8316-8324.	5.5	145
266	An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces. Surface Science, 2019, 681, 122-129.	0.8	145
267	Electronic factors in catalysis. Progress in Surface Science, 1991, 38, 103-144.	3.8	143
268	Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides. Catalysis Letters, 1992, 13, 1-8.	1.4	143
269	Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation. Journal of Physical Chemistry Letters, 2015, 6, 4224-4228.	2.1	142
270	Theoretical Insights into the Selective Oxidation of Methane to Methanol in Copper-Exchanged Mordenite. ACS Catalysis, 2016, 6, 3760-3766.	5.5	139

#	Article	IF	CITATIONS
271	An interpretation of the high-pressure kinetics of ammonia synthesis based on a microscopic model. Journal of Catalysis, 1988, 110, 1-10.	3.1	138
272	Insights into the Electrochemical Oxygen Evolution Reaction with ab Initio Calculations and Microkinetic Modeling: Beyond the Limiting Potential Volcano. Journal of Physical Chemistry C, 2019, 123, 18960-18977.	1.5	138
273	Modeling a Central Ligand in the Nitrogenase FeMo Cofactor. Journal of the American Chemical Society, 2003, 125, 1466-1467.	6.6	136
274	The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: A density functional study. Journal of Catalysis, 2009, 268, 201-208.	3.1	136
275	Methanol-to-hydrocarbons conversion: The alkene methylation pathway. Journal of Catalysis, 2014, 314, 159-169.	3.1	136
276	Barriers of Electrochemical CO ₂ Reduction on Transition Metals. Organic Process Research and Development, 2016, 20, 1424-1430.	1.3	135
277	Cation-exchanged zeolites for the selective oxidation of methane to methanol. Catalysis Science and Technology, 2018, 8, 114-123.	2.1	135
278	Edge termination of MoS2 and CoMoS catalyst particles. Catalysis Letters, 2000, 64, 95-99.	1.4	130
279	Interaction of helium with a metal surface. Physical Review B, 1983, 27, 4612-4616.	1.1	129
280	Oxygen chemisorption on Cu(110): A model for thec(6×2) structure. Physical Review Letters, 1990, 65, 2027-2030.	2.9	129
281	On the behavior of BrÃ,nsted-Evans-Polanyi relations for transition metal oxides. Journal of Chemical Physics, 2011, 134, 244509.	1.2	128
282	Bifunctional alloys for the electroreduction of CO ₂ and CO. Physical Chemistry Chemical Physics, 2016, 18, 9194-9201.	1.3	127
283	Correlation between sticking probability and adsorbate-induced electron structure. Surface Science, 1979, 89, 251-261.	0.8	126
284	Theoretical study of the Au/TiO2() interface. Surface Science, 2002, 515, 175-186.	0.8	126
285	Nano-scale effects in electrochemistry. Chemical Physics Letters, 2004, 390, 440-444.	1.2	126
286	CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2012, 51, 272-274.	7.2	126
287	A New Procedure for Particle Size Determination by EXAFS Based on Molecular Dynamics Simulations. Journal of Catalysis, 1993, 141, 368-379.	3.1	124
288	Electrochemical CO ₂ reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. Physical Chemistry Chemical Physics, 2017, 19, 15856-15863.	1.3	124

#	Article	IF	CITATIONS
289	Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy and Environmental Science, 2020, 13, 4291-4300.	15.6	124
290	Electron structure of single and interacting hydrogen impurities in free-electron-like metals. Physical Review B, 1979, 20, 446-454.	1.1	123
291	A theoretical study of adsorbate–adsorbate interactions on Ru(0001). Surface Science, 1998, 414, 315-329.	0.8	123
292	Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2. ACS Catalysis, 2015, 5, 4075-4081.	5.5	123
293	Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science, 2021, 374, 1593-1597.	6.0	123
294	The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 2019, 4, 2986-2988.	8.8	122
295	Theory of Alkali-Metal-Induced Reconstruction of fcc (110) Surfaces. Physical Review Letters, 1988, 60, 2496-2498.	2.9	121
296	Theoretical Studies of Stability and Reactivity of C2Hydrocarbon Species on Pt Clusters, Pt(111), and Pt(211). Journal of Physical Chemistry B, 2000, 104, 2299-2310.	1.2	121
297	Functional Independent Scaling Relation for ORR/OER Catalysts. Journal of Physical Chemistry C, 2016, 120, 24910-24916.	1.5	119
298	Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111). Physical Review B, 1995, 52, 14954-14962.	1.1	118
299	Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: In Situ XAS and DFT Study. Journal of the American Chemical Society, 2012, 134, 9664-9671.	6.6	117
300	Chemical Activity of the Nitrogenase FeMo Cofactor with a Central Nitrogen Ligand:Â Density Functional Study. Journal of the American Chemical Society, 2004, 126, 3920-3927.	6.6	116
301	A molecular view of heterogeneous catalysis. Journal of Chemical Physics, 2008, 128, 182503.	1.2	116
302	Repulsive interaction of the helium atom with a metal surface. Physical Review B, 1984, 29, 2314-2316.	1.1	115
303	Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Au–Cd alloys. Journal of Catalysis, 2016, 343, 215-231.	3.1	115
304	Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis, 2007, 45, 9-13.	1.3	114
305	Anisotropic corner diffusion as origin for dendritic growth on hexagonal substrates. Surface Science, 1996, 349, L115-L122.	0.8	112
306	Density Functional Calculations of N2Adsorption and Dissociation on a Ru(0001) Surface. Journal of Catalysis, 1997, 169, 85-92.	3.1	112

#	Article	IF	CITATIONS
307	Acidic Oxygen Evolution Reaction Activity–Stability Relationships in Ru-Based Pyrochlores. ACS Catalysis, 2020, 10, 12182-12196.	5.5	111
308	Interaction of Hydrogen with Defects in Metals: Interplay between Theory and Experiment. Physical Review Letters, 1982, 49, 1420-1423.	2.9	110
309	Synergetic effects in CO adsorption on Cu–Pd(111) alloys. Surface Science, 2001, 477, 59-75.	0.8	110
310	On the Role of Metal Step-Edges in Graphene Growth. Journal of Physical Chemistry C, 2010, 114, 11221-11227.	1.5	110
311	Calculated Binding Properties of Hydrogen on Nickel Surfaces. Physical Review Letters, 1982, 48, 1620-1624.	2.9	109
312	Density Functional Theory in Surface Science and Heterogeneous Catalysis. MRS Bulletin, 2006, 31, 669-674.	1.7	108
313	Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2. Journal of Chemical Physics, 2009, 130, 104709.	1.2	108
314	Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces. Chemical Engineering Science, 2011, 66, 6318-6323.	1.9	108
315	Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nature Energy, 2022, 7, 55-64.	19.8	108
316	Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction. Nature Communications, 2021, 12, 620.	5.8	107
317	Theoretical examination of the trapping of ion-implanted hydrogen in metals. Physical Review B, 1986, 33, 854-863.	1.1	106
318	Effective medium potentials for molecule–surface interactions: H2 on Cu and Ni surfaces. Journal of Chemical Physics, 1989, 90, 7461-7471.	1.2	106
319	Growth of Co on Cu(111): subsurface growth of trilayer Co islands. Surface Science, 1997, 387, 86-101.	0.8	106
320	Multiple hydrogen occupancy of vacancies in Fe. Journal of Applied Physics, 1987, 61, 1788-1794.	1.1	104
321	Vibrational excitation, harpooning, and sticking in molecule–surface collisions. Journal of Chemical Physics, 1984, 81, 2828-2838.	1.2	103
322	Adsorption-induced restructuring of gold nanochains. Physical Review B, 2002, 66, .	1.1	102
323	DFT Study of Formaldehyde and Methanol Synthesis from CO and H2on Ni(111)â€. Journal of Physical Chemistry B, 2004, 108, 14535-14540.	1.2	102
324	Electric Field Effects in Oxygen Reduction Kinetics: Rationalizing pH Dependence at the Pt(111), Au(111), and Au(100) Electrodes. Journal of Physical Chemistry C, 2020, 124, 14581-14591.	1.5	102

#	Article	IF	CITATIONS
325	Trends in hydrogen heats of solution and vacancy trapping energies in transition metals. Journal of Physics F: Metal Physics, 1986, 16, 1161-1171.	1.6	101
326	The dissociative adsorption of hydrogen: Twoâ€, threeâ€, and fourâ€dimensional quantum simulations. Journal of Chemical Physics, 1990, 93, 2879-2884.	1.2	100
327	Geometric and electronic factors determining the differences in reactivity of H2 on Cu(100) and Cu(111). Surface Science, 1996, 359, 45-53.	0.8	100
328	Comparing Electrochemical and Biological Water Splitting. Journal of Physical Chemistry C, 2007, 111, 18821-18823.	1.5	100
329	Modeling the Nitrogenase FeMo Cofactor. Journal of the American Chemical Society, 2000, 122, 12751-12763.	6.6	99
330	Catalysis by Enzymes: The Biological Ammonia Synthesis. Topics in Catalysis, 2006, 37, 55-70.	1.3	99
331	Ethylene dissociation on flat and stepped Ni(111): A combined STM and DFT study. Surface Science, 2006, 600, 66-77.	0.8	98
332	Changes in the vibrational frequencies of adsorbed molecules due to an applied electric field. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 161, 193-198.	0.3	97
333	Nitrogen adsorption on Fe(111), (100), and (110) surfaces. Surface Science, 1999, 422, 8-16.	0.8	97
334	Magnetic edge states in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>MoS</mml:mtext></mml:mrow><mml:mr using density-functional theory. Physical Review B, 2009, 80, .</mml:mr </mml:msub></mml:mrow></mml:math>	ı>2k‡mml:	mn 9 97
335	The Catalyst Genome. Angewandte Chemie - International Edition, 2013, 52, 776-777.	7.2	97
336	Elementary steps of syngas reactions on Mo2C(001): Adsorption thermochemistry and bond dissociation. Journal of Catalysis, 2012, 290, 108-117.	3.1	96
337	Reactivity Descriptor in Solid Acid Catalysis: Predicting Turnover Frequencies for Propene Methylation in Zeotypes. Journal of Physical Chemistry Letters, 2014, 5, 1516-1521.	2.1	96
338	Cu cluster shell structure at elevated temperatures. Physical Review Letters, 1991, 66, 2219-2222.	2.9	95
339	A Theoretical Investigation into the Role of Surface Defects for Oxygen Evolution on RuO ₂ . Journal of Physical Chemistry C, 2017, 121, 18516-18524.	1.5	95
340	Chemisorption of Methane on Ni(100) and Ni(111) Surfaces with Preadsorbed Potassium. Journal of Catalysis, 1999, 187, 238-244.	3.1	94
341	Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO ₃ oxides. Physical Chemistry Chemical Physics, 2018, 20, 3813-3818.	1.3	94
342	Scattering and conductance quantization in three-dimensional metal nanocontacts. Physical Review B, 1997, 55, 2637-2650.	1.1	93

#	Article	IF	CITATIONS
343	A density functional study of inhibition of the HDS hydrogenation pathway by pyridine, benzene, and H2S on MoS2-based catalysts. Catalysis Today, 2006, 111, 44-51.	2.2	93
344	Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO ₂ . ACS Sustainable Chemistry and Engineering, 2017, 5, 11080-11085.	3.2	93
345	Multiple deuterium occupancy of vacancies in Pd and related metals. Physical Review B, 1989, 40, 1990-1992.	1.1	92
346	Using scaling relations to understand trends in the catalytic activity of transition metals. Journal of Physics Condensed Matter, 2008, 20, 064239.	0.7	92
347	Dynamics of molecule-surface interactions. Surface Science, 1987, 179, L41-L48.	0.8	91
348	CO adsorption and dissociation on Pt(111) and Ni(111) surfaces. Surface Science, 1997, 386, 67-72.	0.8	91
349	Acid-Stable Oxides for Oxygen Electrocatalysis. ACS Energy Letters, 2020, 5, 2905-2908.	8.8	90
350	Adsorption of Cu and Pd on α-Al2O3(0001) surfaces with different stoichiometries. Journal of Chemical Physics, 2001, 115, 11261-11267.	1.2	89
351	Multidimensional Effects on Dissociation ofN2on Ru(0001). Physical Review Letters, 2006, 96, 096102.	2.9	89
352	Mechanistic insights into heterogeneous methane activation. Physical Chemistry Chemical Physics, 2017, 19, 3575-3581.	1.3	89
353	SBH10: A Benchmark Database of Barrier Heights on Transition Metal Surfaces. Journal of Physical Chemistry C, 2017, 121, 19807-19815.	1.5	89
354	Analysis of Acid-Stable and Active Oxides for the Oxygen Evolution Reaction. ACS Energy Letters, 2020, 5, 3778-3787.	8.8	89
355	Generation of Nanopores during Desorption of NH3from Mg(NH3)6Cl2. Journal of the American Chemical Society, 2006, 128, 16-17.	6.6	88
356	Effect of Boron Modifications of Palladium Catalysts for the Production of Hydrogen from Formic Acid. ACS Catalysis, 2015, 5, 6579-6586.	5.5	88
357	Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO ₂ Hydrogenation over In ₂ O ₃ Surfaces. ACS Catalysis, 2021, 11, 1780-1786.	5.5	88
358	A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 forSCR–DeNOxin vehicles. Chemical Engineering Science, 2006, 61, 2618-2625.	1.9	87
359	Formation energies of rutile metal dioxides using density functional theory. Physical Review B, 2009, 79, .	1.1	87
360	The role of transition metal interfaces on the electronic transport in lithium–air batteries. Catalysis Today, 2011, 165, 2-9.	2.2	87

#	Article	IF	CITATIONS
361	Electronic Origin of the Surface Reactivity of Transition-Metal-Doped TiO ₂ (110). Journal of Physical Chemistry C, 2013, 117, 460-465.	1.5	87
362	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29252-29259.	1.5	87
363	Is there a contraction of the interatomic distance in small metal particles?. Physical Review Letters, 1990, 64, 3155-3158.	2.9	86
364	A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis. Physical Chemistry Chemical Physics, 2018, 20, 4982-4989.	1.3	86
365	Trends in hydride formation energies for magnesium-3d transition metal alloys. Journal of Alloys and Compounds, 2005, 386, 1-7.	2.8	85
366	Green Gold Catalysis. Science, 2010, 327, 278-279.	6.0	85
367	Dynamical aspects of electronic structure during adsorption. Journal of Vacuum Science and Technology, 1981, 18, 420-426.	1.9	84
368	Direct pathway for sticking/desorption ofH2on Si(100). Physical Review B, 1995, 51, 13432-13440.	1.1	84
369	Experimental and computational studies on structural transitions in the LiBH4–Lil pseudobinary system. Applied Physics Letters, 2009, 94, .	1.5	84
370	Lithium and oxygen vacancies and their role in Li ₂ O ₂ charge transport in Li–O ₂ batteries. Energy and Environmental Science, 2014, 7, 720-727.	15.6	84
371	Mechanistic insights into nitrogen fixation by nitrogenase enzymes. Physical Chemistry Chemical Physics, 2015, 17, 29541-29547.	1.3	84
372	Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles. Surface Science, 2009, 603, 1731-1739.	0.8	83
373	Ab Initio van der Waals Interactions in Simulations of Water Alter Structure from Mainly Tetrahedral to High-Density-Like. Journal of Physical Chemistry B, 2011, 115, 14149-14160.	1.2	83
374	"Dealloying" Phase Separation during Growth of Au on Ni(110). Physical Review Letters, 1995, 74, 1159-1162.	2.9	82
375	Kinetics of the Anode Processes in PEM Fuel Cells - The Promoting Effect of Ru in PtRu Anodes. Fuel Cells, 2001, 1, 192-201.	1.5	82
376	CO Oxidation on Rutile-Supported Au Nanoparticles. Angewandte Chemie, 2005, 117, 1858-1860.	1.6	82
377	Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 26863-26871.	4.0	81
378	Dissociation path forH2on Al(110). Physical Review Letters, 1992, 69, 1971-1974.	2.9	80

#	Article	IF	CITATIONS
379	Density functional theory studies of the adsorption of ethylene and oxygen on Pt(111) and Pt[sub 3]Sn(111). Journal of Chemical Physics, 2001, 114, 4663.	1.2	80
380	Optimal Catalyst Curves: Connecting Density Functional Theory Calculations with Industrial Reactor Design and Catalyst Selection. Journal of Catalysis, 2002, 205, 382-387.	3.1	80
381	Descriptorâ€Based Analysis Applied to HCN Synthesis from NH ₃ and CH ₄ . Angewandte Chemie - International Edition, 2011, 50, 4601-4605.	7.2	80
382	Modeling CO2 reduction on Pt(111). Physical Chemistry Chemical Physics, 2013, 15, 7114.	1.3	80
383	Computational Design of Active Site Structures with Improved Transition-State Scaling for Ammonia Synthesis. ACS Catalysis, 2018, 8, 4017-4024.	5.5	80
384	Energies controlling nucleation and growth processes: The case of Ag/W(110). Physical Review Letters, 1990, 65, 3317-3320.	2.9	79
385	Size dependence of phase separation in small bimetallic clusters. Journal of Physics Condensed Matter, 1995, 7, 1047-1057.	0.7	79
386	Interaction of hydrogen with defects in metals. Nuclear Instruments & Methods in Physics Research B, 1985, 7-8, 55-66.	0.6	78
387	Designing surface alloys with specific active sites. Catalysis Letters, 1996, 40, 131-135.	1.4	77
388	Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project. Journal of Chemical Physics, 2009, 131, 014101.	1.2	77
389	Step sites in syngas catalysis. Topics in Catalysis, 2006, 40, 45-48.	1.3	76
390	BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. Physical Chemistry Chemical Physics, 2008, 10, 5202.	1.3	76
391	Methanol to Dimethyl Ether over ZSM-22: A Periodic Density Functional Theory Study. ACS Catalysis, 2013, 3, 735-745.	5.5	76
392	Resolving Hysteresis in Perovskite Solar Cells with Rapid Flameâ€Processed Cobaltâ€Doped TiO ₂ . Advanced Energy Materials, 2018, 8, 1801717.	10.2	76
393	Understanding the Effect of Steps, Strain, Poisons, and Alloying: Methane Activation on Ni Surfaces. Catalysis Letters, 2005, 105, 9-13.	1.4	74
394	Automated Discovery and Construction of Surface Phase Diagrams Using Machine Learning. Journal of Physical Chemistry Letters, 2016, 7, 3931-3935.	2.1	74
395	Scaling-Relation-Based Analysis of Bifunctional Catalysis: The Case for Homogeneous Bimetallic Alloys. ACS Catalysis, 2017, 7, 3960-3967.	5.5	74
396	Rapid flame doping of Co to WS ₂ for efficient hydrogen evolution. Energy and Environmental Science, 2018, 11, 2270-2277.	15.6	74

#	Article	IF	CITATIONS
397	Olesenet al.Reply:. Physical Review Letters, 1995, 74, 2147-2147.	2.9	73
398	Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction. Chemistry of Materials, 2020, 32, 5854-5863.	3.2	73
399	The Theory of Ionization Probability in Sputtering. Physica Scripta, 1983, T6, 15-18.	1.2	72
400	First principles analysis of hydrogen chemisorption on Pd–Re alloyed overlayers and alloyed surfaces. Journal of Chemical Physics, 2000, 112, 5435-5439.	1.2	72
401	Monte Carlo simulations of adsorption-induced segregation. Surface Science, 2002, 505, 200-214.	0.8	72
402	Oxygen chemisorption and incorporation on transition metal surfaces. Surface Science, 1985, 152-153, 660-683.	0.8	71
403	Theoretical aspects of surface reactions. Surface Science, 1987, 189-190, 91-105.	0.8	71
404	Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt ₃ Ni(111). Journal of Physical Chemistry C, 2012, 116, 4698-4704.	1.5	71
405	Mechanistic Insights into the Synthesis of Higher Alcohols from Syngas on CuCo Alloys. ACS Catalysis, 2018, 8, 10148-10155.	5.5	71
406	Chemisorption of H, O, and S on Ni(110): general trends. Surface Science, 1992, 272, 334-341.	0.8	70
407	Nitrogen Adsorption and Hydrogenation on aMoFe6S9Complex. Physical Review Letters, 1999, 82, 4054-4057.	2.9	70
408	CO oxidation on PdO surfaces. Journal of Chemical Physics, 2010, 133, 084704.	1.2	70
409	Understanding the Reactivity of Layered Transition-Metal Sulfides: A Single Electronic Descriptor for Structure and Adsorption. Journal of Physical Chemistry Letters, 2014, 5, 3884-3889.	2.1	70
410	Surface stress, surface elasticity, and the size effect in surface segregation. Physical Review B, 1995, 51, 10937-10946.	1.1	69
411	Rate Control and Reaction Engineering. Science, 2009, 324, 1655-1656.	6.0	69
412	Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution. Nano Letters, 2014, 14, 5853-5857.	4.5	69
413	A Highly Active Molybdenum Phosphide Catalyst for Methanol Synthesis from CO and CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 15045-15050.	7.2	69
414	Efficient Pourbaix diagrams of many-element compounds. Physical Chemistry Chemical Physics, 2019, 21, 25323-25327.	1.3	69

#	Article	IF	CITATIONS
415	Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. Npj Computational Materials, 2020, 6, .	3.5	69
416	Theory of Adsorption and Surface Reactions. , 1997, , 285-351.		69
417	Adsorbate Reorganization at Steps: NO on Pd(211). Physical Review Letters, 1997, 79, 4441-4444.	2.9	68
418	Finite-Size Effects in O and CO Adsorption for the Late Transition Metals. Topics in Catalysis, 2012, 55, 1276-1282.	1.3	68
419	Ni–Fe–S Cubanes in CO ₂ Reduction Electrocatalysis: A DFT Study. ACS Catalysis, 2013, 3, 2640-2643.	5.5	68
420	Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 29307-29318.	1.5	68
421	Role of Subsurface Oxygen on Cu Surfaces for CO ₂ Electrochemical Reduction. Journal of Physical Chemistry C, 2018, 122, 16209-16215.	1.5	68
422	Predicting Chemical Reaction Barriers with a Machine Learning Model. Catalysis Letters, 2019, 149, 2347-2354.	1.4	68
423	Theory of Adsorbate-Induced Surface Relaxations: Hydrogen on Cu(110). Physical Review Letters, 1987, 59, 2764-2767.	2.9	67
424	N2 dissociation on Fe(110) and Fe/Ru(0001): what is the role of steps?. Surface Science, 2001, 491, 183-194.	0.8	67
425	Water Dissociative Adsorption on NiO(111): Energetics and Structure of the Hydroxylated Surface. ACS Catalysis, 2016, 6, 7377-7384.	5.5	67
426	A Combined Theoryâ€Experiment Analysis of the Surface Species in Lithiumâ€Mediated NH ₃ Electrosynthesis. ChemElectroChem, 2020, 7, 1542-1549.	1.7	67
427	Anharmonicity and disorder on the Cu(110) surface. Physical Review B, 1991, 44, 13002-13009.	1.1	66
428	The Ligand Effect: CO Desorption from Pt/Ru Catalysts. Fuel Cells, 2005, 5, 429-435.	1.5	66
429	High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Research, 2017, 10, 1163-1177.	5.8	66
430	Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenates. ACS Catalysis, 2017, 7, 5746-5757.	5.5	66
431	Selectivity of Synthesis Gas Conversion to C ₂₊ Oxygenates on fcc(111) Transition-Metal Surfaces. ACS Catalysis, 2018, 8, 3447-3453.	5.5	66
432	Self-Consistent Calculation of Molecular Chemisorption on Metals. Physica Scripta, 1979, 20, 192-201.	1.2	65

#	Article	IF	CITATIONS
433	Calculated energies and geometries for hydrogen impurities in Al and Mg. Journal of Physics F: Metal Physics, 1979, 9, 1975-1982.	1.6	65
434	The onset of disorder in Al(110) surfaces below the melting point. Surface Science, 1989, 220, L693-L700.	0.8	65
435	The coupling between adsorption dynamics and the surface structure: H2 on Si(100). Chemical Physics Letters, 1994, 229, 645-649.	1.2	65
436	Diffusion of N Adatoms on the Fe(100) Surface. Physical Review Letters, 2000, 84, 4898-4901.	2.9	65
437	Adsorption-Induced Step Formation. Physical Review Letters, 2001, 87, 126102.	2.9	65
438	Heterogeneous Catalysis. , 2008, , 255-321.		65
439	<i>In silico</i> search for novel methane steam reforming catalysts. New Journal of Physics, 2013, 15, 125021.	1.2	65
440	A systematic study of metal-supported boron nitride materials for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 12722-12727.	1.3	65
441	A multifaceted approach to hydrogen storage. Physical Chemistry Chemical Physics, 2011, 13, 16955.	1.3	64
442	Analyzing the Case for Bifunctional Catalysis. Angewandte Chemie - International Edition, 2016, 55, 5210-5214.	7.2	64
443	Asymmetric pair distribution functions in catalysts. Topics in Catalysis, 2000, 10, 221-230.	1.3	63
444	Solvent–Adsorbate Interactions and Adsorbate-Specific Solvent Structure in Carbon Dioxide Reduction on a Stepped Cu Surface. Journal of Physical Chemistry C, 2019, 123, 5999-6009.	1.5	63
445	Sizeâ€5pecific Chemistry on Bimetallic Surfaces: A Combined Experimental and Theoretical Study. ChemPhysChem, 2007, 8, 2068-2071.	1.0	62
446	Energetics of Oxygen Adatoms, Hydroxyl Species and Water Dissociation on Pt(111). Journal of Physical Chemistry C, 2012, 116, 25772-25776.	1.5	62
447	Enzymatic versus Inorganic Oxygen Reduction Catalysts: Comparison of the Energy Levels in a Free-Energy Scheme. Inorganic Chemistry, 2010, 49, 3567-3572.	1.9	61
448	Modeling van der Waals Interactions in Zeolites with Periodic DFT: Physisorption of n-Alkanes in ZSM-22. Catalysis Letters, 2012, 142, 1057-1060.	1.4	61
449	Guest–host interactions of arenes in H-ZSM-5 and their impact on methanol-to-hydrocarbons deactivation processes. Journal of Catalysis, 2013, 300, 235-241.	3.1	61
450	Accommodation and diffusion of Cu deposited on flat and stepped Cu(111) surfaces. Physical Review B, 1993, 48, 5607-5611.	1.1	60

#	Article	IF	CITATIONS
451	Al–Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. Journal of Physical Chemistry Letters, 2015, 6, 175-179.	2.1	60
452	Multidimensional effects in dissociative chemisorption:H2on Cu and Ni surfaces. Physical Review B, 1992, 45, 11362-11365.	1.1	59
453	Molecular aspects of the H2 activation on MoS2 based catalysts — the role of dynamic surface arrangements. Journal of Molecular Catalysis A, 2000, 163, 117-122.	4.8	59
454	Surface Tension Effects on the Reactivity of Metal Nanoparticles. Journal of Physical Chemistry Letters, 2015, 6, 3797-3801.	2.1	59
455	Stable Two-Dimensional Materials for Oxygen Reduction and Oxygen Evolution Reactions. ACS Energy Letters, 2019, 4, 1410-1411.	8.8	59
456	Island shapes in homoepitaxial growth of Pt(111). Surface Science, 1996, 359, 37-44.	0.8	58
457	Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting. Physical Chemistry Chemical Physics, 2015, 17, 2634-2640.	1.3	58
458	Two-Dimensional Materials as Catalysts for Energy Conversion. Catalysis Letters, 2016, 146, 1917-1921.	1.4	58
459	Modeling Hydrogen Evolution Reaction Kinetics through Explicit Water–Metal Interfaces. Journal of Physical Chemistry C, 2020, 124, 28083-28092.	1.5	58
460	Electronic structure of H and He in metal vacancies. Solid State Communications, 1977, 24, 691-693.	0.9	57
461	Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960.	3.2	57
462	"Erratum to Electronic factors determining the reactivity of metal surfaces―[Surface Science 343 (1995) 211]. Surface Science, 1996, 359, 306.	0.8	56
463	Molecular N2 chemisorption—specific adsorption on step defect sites on Pt surfaces. Journal of Chemical Physics, 1999, 111, 8651-8658.	1.2	56
464	Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media. ACS Applied Materials & Interfaces, 2019, 11, 34059-34066.	4.0	56
465	Immobilization mechanisms for ionâ€implanted deuterium in aluminum. Journal of Applied Physics, 1985, 58, 1841-1850.	1.1	55
466	Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers. Journal of Chemical Physics, 2009, 131, 046102.	1.2	55
467	Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0 0 0 1). Journal of Catalysis, 2014, 309, 397-407.	3.1	54
468	Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Central Science, 2017, 3, 1286-1293.	5.3	54

#	Article	IF	CITATIONS
469	Trends in oxygen reduction and methanol activation on transition metal chalcogenides. Electrochimica Acta, 2011, 56, 9783-9788.	2.6	53
470	Electro-Oxidation of Methane on Platinum under Ambient Conditions. ACS Catalysis, 2019, 9, 7578-7587.	5.5	53
471	Electrostatic interactions and their role in coadsorption phenomena. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 1935.	1.0	52
472	Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces. Journal of Physical Chemistry C, 2011, 115, 2244-2252.	1.5	52
473	Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001). Physical Review Letters, 2013, 110, 186101.	2.9	51
474	On the role of the surface oxygen species during A–H (A = C, N, O) bond activation: a density functional theory study. Chemical Communications, 2015, 51, 2621-2624.	2.2	51
475	Calculation of the helium diffraction from the reconstructed Au(110) surface. Surface Science, 1982, 119, L393-L400.	0.8	50
476	Many-atom interactions in metals. Surface Science, 1993, 283, 277-282.	0.8	50
477	The mobility of Pt atoms and small Pt clusters on Pt(111) and its implications for the early stages of epitaxial growth. Surface Science, 1994, 321, 161-171.	0.8	50
478	Understanding the Influence of [EMIM]Cl on the Suppression of the Hydrogen Evolution Reaction on Transition Metal Electrodes. Langmuir, 2017, 33, 9464-9471.	1.6	50
479	Rare-gas-metal pair potential: He-vacancy interaction. Journal of Physics F: Metal Physics, 1982, 12, L7-L11.	1.6	49
480	CO Desorption Rate Dependence on CO Partial Pressure over Platinum Fuel Cell Catalysts. Fuel Cells, 2004, 4, 309-319.	1.5	49
481	Climbing the Activity Volcano: Core–Shell Ru@Pt Electrocatalysts for Oxygen Reduction. ChemElectroChem, 2014, 1, 67-71.	1.7	49
482	The energetics and dynamics of H2 dissociation on Al(110). Surface Science, 1994, 304, 131-144.	0.8	48
483	The effect of strain for N2 dissociation on Fe surfaces. Surface Science, 2001, 489, 135-143.	0.8	48
484	The reaction rate for dissociative adsorption of N2 on stepped Ru(0001): Six-dimensional quantum calculations. Journal of Chemical Physics, 2005, 122, 234702.	1.2	48
485	Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Communications Chemistry, 2022, 5, .	2.0	48
486	Ammonia dynamics in magnesium ammine from DFT and neutron scattering. Energy and Environmental Science, 2010, 3, 448.	15.6	47

#	ARTICLE	IF	CITATIONS
487	Pt Skin Versus Pt Skeleton Structures of Pt3Sc as Electrocatalysts for Oxygen Reduction. Topics in Catalysis, 2014, 57, 245-254.	1.3	47
488	Theoretical Limits to the Anode Potential in Aqueous Mg–Air Batteries. Journal of Physical Chemistry C, 2015, 119, 19660-19667.	1.5	47
489	Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer. Nature Communications, 2018, 9, 3202.	5.8	47
490	First principles micro-kinetic model of catalytic non-oxidative dehydrogenation of ethane over close-packed metallic facets. Journal of Catalysis, 2019, 374, 161-170.	3.1	47
491	Insights into carbon nanotube nucleation: Cap formation governed by catalyst interfacial step flow. Scientific Reports, 2014, 4, 6510.	1.6	46
492	Ultrathin Cobalt Oxide Overlayer Promotes Catalytic Activity of Cobalt Nitride for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 4783-4791.	1.5	46
493	Melting a Copper Cluster: Critical-Droplet Theory. Europhysics Letters, 1994, 26, 51-56.	0.7	45
494	Mechanisms of self-diffusion on Pt(110). Physical Review B, 1999, 60, R5149-R5152.	1.1	45
495	Hydrogen evolution on Au(111) covered with submonolayers of Pd. Physical Review B, 2011, 84, .	1.1	45
496	Catalysis in real time using X-ray lasers. Chemical Physics Letters, 2017, 675, 145-173.	1.2	45
497	Increasing Current Density of Li-Mediated Ammonia Synthesis with High Surface Area Copper Electrodes. ACS Energy Letters, 2022, 7, 36-41.	8.8	45
498	Self Blocking of CO Dissociation on a Stepped Ruthenium Surface. Topics in Catalysis, 2010, 53, 357-364.	1.3	44
499	Electronic shell structure and chemisorption on gold nanoparticles. Physical Review B, 2011, 84, .	1.1	44
500	Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au12 Nanoclusters. Topics in Catalysis, 2012, 55, 336-344.	1.3	44
501	First principles investigation of zinc-anode dissolution in zinc–air batteries. Physical Chemistry Chemical Physics, 2013, 15, 6416.	1.3	44
502	Theoretical Study of EMIM ⁺ Adsorption on Silver Electrode Surfaces. Journal of Physical Chemistry C, 2015, 119, 20023-20029.	1.5	44
503	Scaling Relations on Basal Plane Vacancies of Transition Metal Dichalcogenides for CO ₂ Reduction. Journal of Physical Chemistry C, 2019, 123, 4256-4261.	1.5	44
504	Origins of the Instability of Nonprecious Hydrogen Evolution Reaction Catalysts at Open-Circuit Potential. ACS Energy Letters, 2021, 6, 2268-2274.	8.8	44

#	Article	IF	CITATIONS
505	H-H interactions in Pd. Physical Review B, 1989, 40, 1993-1996.	1.1	43
506	Ab initiopotential for solids. Physical Review B, 1992, 46, 3798-3809.	1.1	43
507	Chemisorption and vibration of hydrogen on Cu(111). Surface Science, 1993, 285, 27-30.	0.8	43
508	Pareto-optimal alloys. Applied Physics Letters, 2003, 83, 4527-4529.	1.5	43
509	Reactive and nonreactive scattering of N2 from Ru(0001): A six-dimensional adiabatic study. Journal of Chemical Physics, 2006, 125, 114706.	1.2	43
510	Oral health-related quality of life in patients treated by implant-supported fixed dentures and removable partial dentures. Clinical Oral Implants Research, 2012, 23, 958-962.	1.9	43
511	Nature of Lone-Pair–Surface Bonds and Their Scaling Relations. Inorganic Chemistry, 2018, 57, 7222-7238.	1.9	43
512	Electrochemical oxidation of molecular nitrogen to nitric acid – towards a molecular level understanding of the challenges. Chemical Science, 2021, 12, 6442-6448.	3.7	43
513	Improved Oxygen Reduction Reaction Activity of Nanostructured CoS ₂ through Electrochemical Tuning. ACS Applied Energy Materials, 2019, 2, 8605-8614.	2.5	42
514	Picture of adsorption and desorption of hydrogen emerging from self-consistent model calculations. Surface Science, 1979, 80, 441-449.	0.8	41
515	Application of a new informatics tool in heterogeneous catalysis: Analysis of methanol dehydrogenation on transition metal catalysts for the production of anhydrous formaldehyde. Journal of Catalysis, 2012, 291, 133-137.	3.1	41
516	Hydrogen adsorption on bimetallic PdAu(111) surface alloys: minimum adsorption ensemble, ligand and ensemble effects, and ensemble confinement. Physical Chemistry Chemical Physics, 2014, 16, 23930-23943.	1.3	41
517	Surface energetics of alkaline-earth metal oxides: Trends in stability and adsorption of small molecules. Physical Review B, 2015, 91, .	1.1	41
518	Two-Dimensional Conductive Ni-HAB as a Catalyst for the Electrochemical Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 39074-39081.	4.0	41
519	Variation of Adatom Valence-Level Positions With the Distance to a Metal Surface. Physica Scripta, 1980, 22, 165-170.	1.2	40
520	Insights into ammonia synthesis from first-principles. Surface Science, 2006, 600, 4264-4268.	0.8	40
521	Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides. Journal of Physical Chemistry C, 2017, 121, 16440-16446.	1.5	40
522	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Applied Energy Materials, 2018, 1, 1990-1999.	2.5	40

#	Article	IF	CITATIONS
523	A theoretical explanation of the effect of oxygen poisoning on industrial Haber-Bosch catalysts. Journal of Catalysis, 2019, 372, 33-38.	3.1	40
524	First-principles investigations of the Ni3Sn alloy at steam reforming conditions. Surface Science, 2009, 603, 762-770.	0.8	39
525	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Đerived Copper. Angewandte Chemie, 2016, 128, 1472-1476.	1.6	39
526	Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces. ACS Catalysis, 2017, 7, 2528-2534.	5.5	39
527	The surface science based ammonia kinetics revisited. Topics in Catalysis, 1994, 1, 253-263.	1.3	38
528	Theory of adsorption and adsorbate-induced reconstruction. Surface Science, 1994, 299-300, 690-705.	0.8	38
529	Spectroscopic Link between Adsorption Site Occupation and Local Surface Chemical Reactivity. Physical Review Letters, 2004, 93, 046101.	2.9	38
530	A spin promotion effect in catalytic ammonia synthesis. Nature Communications, 2022, 13, 2382.	5.8	38
531	Oxygen adsorption on Pt(110)-(1×2): new high-coverage structures. Surface Science, 1999, 430, L533-L539.	0.8	37
532	Comment on â€~the application of surface kinetic data to the industrial synthesis of ammonia' by M. Bowker, I. Parker and K.C. Waugh. Surface Science, 1988, 197, L230-L232.	0.8	36
533	In vivo diffusion weighted19F MRI using SF6. Magnetic Resonance in Medicine, 2005, 54, 460-463.	1.9	36
534	Step Effects on the Dissociation of NO on Close-Packed Rhodium Surfaces. Journal of Physical Chemistry C, 2009, 113, 20623-20631.	1.5	36
535	Facile Electron Transfer to CO ₂ during Adsorption at the Metal Solution Interface. Journal of Physical Chemistry C, 2019, 123, 29278-29283.	1.5	36
536	Trends in catalytic NO decomposition over transition metal surfaces. Topics in Catalysis, 2007, 45, 117-120.	1.3	35
537	Optimized and transferable densities from first-principles local density calculations. Journal of Physics Condensed Matter, 1991, 3, 5437-5443.	0.7	34
538	Determination of metal particle sizes from EXAFS. Catalysis Today, 1994, 21, 49-55.	2.2	34
539	Advances in deep desulfurization. Studies in Surface Science and Catalysis, 1999, 121, 13-22.	1.5	34
540	Theoretical Investigation of Methane Oxidation on Pd(111) and Other Metallic Surfaces. Journal of Physical Chemistry C, 2018, 122, 16023-16032.	1.5	34

#	Article	IF	CITATIONS
541	Monte Carlo calculation of the thermal expansion coefficient of Al. Physical Review B, 1987, 36, 5035-5036.	1.1	32
542	Vibrational properties of aluminum, nickel and copper surfaces. Surface Science, 1991, 254, 261-274.	0.8	32
543	Activation free energy and entropy for the normal and exchange selfdiffusion processes on Cu(100). Surface Science, 1993, 289, 68-74.	0.8	32
544	Van der Waals effect in weak adsorption affecting trends in adsorption, reactivity, and the view of substrate nobility. Physical Review B, 2011, 83, .	1.1	32
545	Trends in Hydrodesulfurization Catalysis Based on Realistic Surface Models. Catalysis Letters, 2014, 144, 1425-1432.	1.4	32
546	Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2020, 11, 10029-10036.	2.1	32
547	New insights on CO and CO2 hydrogenation for methanol synthesis: The key role of adsorbate-adsorbate interactions on Cu and the highly active MgO-Cu interface. Journal of Catalysis, 2021, 400, 325-331.	3.1	32
548	Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 5151-5158.	1.5	32
549	Interaction of deuterium with lattice defects in nickel. Nuclear Instruments & Methods in Physics Research B, 1984, 4, 374-387.	0.6	31
550	Scaling Relations in Homogeneous Catalysis: Analyzing the Buchwald–Hartwig Amination Reaction. ACS Catalysis, 2020, 10, 336-345.	5.5	31
551	Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys. Physical Review Letters, 1998, 80, 1240-1243.	2.9	30
552	Electrochemistry on the computer: Understanding how to tailor the metal overlayers for the oxygen reduction reaction. Surface Science, 2008, 602, 2337-2338.	0.8	30
553	Excitation of Hydrogen Motion inside a Nickel Vacancy. Physical Review Letters, 1985, 55, 852-855.	2.9	29
554	Response to "Comment on â€Trends in the Exchange Current for Hydrogen Evolution' [J. Electrochem. Soc., 152, J23 (2005)]― Journal of the Electrochemical Society, 2006, 153, L33.	1.3	29
555	Bond control in surface reactions. Nature, 2009, 461, 1223-1225.	13.7	29
556	Formation energies of group I and II metal oxides using random phase approximation. Physical Review B, 2013, 87, .	1.1	29
557	A description of the highâ€pressure ammonia synthesis reaction based on surface science. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 581-585.	0.9	28
558	Scaling Relationships and Volcano Plots in Homogeneous Catalysis. Journal of Physical Chemistry Letters, 2020, 11, 8518-8526.	2.1	28

#	Article	IF	CITATIONS
559	Adsorbate–surface and adsorbate–adsorbate interactions and their role in surface reactions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 1668-1672.	0.9	27
560	Effective-medium tight-binding model for silicon. Physical Review B, 1994, 50, 10727-10741.	1.1	27
561	Importance of Dynamics in real catalyst systems. Studies in Surface Science and Catalysis, 1997, , 121-139.	1.5	27
562	A Comparison of N ₂ and CO Adsorption on Ru(001). Zeitschrift Fur Physikalische Chemie, 1997, 198, 113-122.	1.4	27
563	SURFACE SCIENCE: How to Power a Nanomotor. , 2000, 290, 1520-1520.		26
564	Role of Co ₂ C in ZnOâ€promoted Co Catalysts for Alcohol Synthesis from Syngas. ChemCatChem, 2019, 11, 799-809.	1.8	26
565	Effective-medium calculations for hydrogen in Ni, Pd, and Pt. Physical Review B, 1990, 41, 12413-12423.	1.1	25
566	The Effect of Anharmonicity on the EXAFS Coordination Number in Small Metallic Particles. Japanese Journal of Applied Physics, 1993, 32, 95.	0.8	25
567	Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism. Journal of Physics Condensed Matter, 2008, 20, 064236.	0.7	25
568	Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy andAbÂlnitioSimulations. Physical Review Letters, 2015, 114, 156101.	2.9	25
569	Scaling Relationships for Binding Energies of Transition Metal Complexes. Catalysis Letters, 2016, 146, 304-308.	1.4	25
570	Atomistic Insight into Cation Effects on Binding Energies in Cu-Catalyzed Carbon Dioxide Reduction. Journal of Physical Chemistry C, 2020, 124, 24765-24775.	1.5	25
571	Probing the Effects of Acid Electrolyte Anions on Electrocatalyst Activity and Selectivity for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2467-2478.	1.7	25
572	The Electronic Factor in Heterogeneous Catalysis. Advances in Catalysis, 1955, 7, 1-45.	0.1	24
573	β-Sheet Preferences from First Principles. Journal of the American Chemical Society, 2003, 125, 16383-16386.	6.6	24
574	Elastic Effects behind Cooperative Bonding in β-Sheets. Journal of the American Chemical Society, 2004, 126, 13140-13143.	6.6	24
575	Prediction of Stable and Active (Oxy-Hydro) Oxide Nanoislands on Noble-Metal Supports for Electrochemical Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 2006-2013.	4.0	24
576	Effect of Manganese on the Selective Catalytic Hydrogenation of COx in the Presence of Light Hydrocarbons Over Ni/Al2O3: An Experimental and Computational Study. ACS Catalysis, 2020, 10, 1535-1547.	5.5	24

#	Article	IF	CITATIONS
577	A theoretical study of carbon chemisorption on nickel surfaces. Surface Science, 1986, 166, 539-553.	0.8	23
578	Electrostatic interactions between coadsorbed Xe and CO. Surface Science, 1990, 226, L48-L50.	0.8	23
579	Structure of the FeFe-cofactor of the iron-only nitrogenase and possible mechanism for dinitrogen reduction. Physical Chemistry Chemical Physics, 2004, 6, 843-853.	1.3	23
580	Indirect hydrogen storage in metal ammines. , 2008, , 533-564.		23
581	First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction. ACS Nano, 2022, 16, 6334-6348.	7.3	23
582	Photoelectrocatalysis and electrocatalysis on silicon electrodes decorated with cubane-like clusters. Journal of Photonics for Energy, 2012, 2, 026001.	0.8	22
583	Engineering metal–metal oxide surfaces for high-performance oxygen reduction on Ag–Mn electrocatalysts. Energy and Environmental Science, 2022, 15, 1611-1629.	15.6	22
584	Catalysis frozen in time. Nature, 2001, 414, 405-406.	13.7	21
585	Evidence of Scrambling over Rutheniumâ€based Catalysts in Supercriticalâ€water Gasification. ChemCatChem, 2012, 4, 1185-1189.	1.8	21
586	Electroreduction of Methanediol on Copper. Catalysis Letters, 2013, 143, 631-635.	1.4	21
587	Chemical Bond Activation Observed with an X-ray Laser. Journal of Physical Chemistry Letters, 2016, 7, 3647-3651.	2.1	21
588	Theory-Aided Discovery of Metallic Catalysts for Selective Propane Dehydrogenation to Propylene. ACS Catalysis, 2021, 11, 6290-6297.	5.5	21
589	Stability and Activity of Cobalt Antimonate for Oxygen Reduction in Strong Acid. ACS Energy Letters, 2022, 7, 993-1000.	8.8	21
590	Impurity interactions and pseudo-molecule formation in metals. Solid State Communications, 1978, 25, 995-998.	0.9	20
591	Interaction of hydrogen isotopes with metals: Deuterium trapped at lattice defects in palladium. Journal of Fusion Energy, 1990, 9, 257-261.	0.5	20
592	Polarization and charge transfer during the dissociation of H2 on Al(110). Surface Science, 1993, 297, L68-L72.	0.8	20
593	Direct NO decomposition over stepped transition-metal surfaces. Pure and Applied Chemistry, 2007, 79, 1895-1903.	0.9	20
594	The surface science of enzymes. Surface Science, 2002, 500, 678-698.	0.8	19

#	Article	IF	CITATIONS
595	Interaction of Pd with steps on α-Al2O3(). Surface Science, 2002, 518, L577-L582.	0.8	19
596	A simple and realistic model system for studying hydrogen bonds in β-sheets. Journal of Chemical Physics, 2003, 118, 9783-9794.	1.2	19
597	Calculated formation and reaction energies of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>dmetal oxides using a hierarchy of exchange-correlation functionals. Physical Review B, 2013, 88, .</mml:mi></mml:mrow></mml:math 	> ₄/,ı nml:m	ıra v 9>
598	The Challenge of CO Hydrogenation to Methanol: Fundamental Limitations Imposed by Linear Scaling Relations. Topics in Catalysis, 2020, 63, 635-648.	1.3	19
599	Generalizable Trends in Electrochemical Protonation Barriers. Journal of Physical Chemistry Letters, 2021, 12, 5193-5200.	2.1	19
600	Understanding Trends in Ethylene Epoxidation on Group IB Metals. ACS Catalysis, 2021, 11, 12052-12057.	5.5	19
601	An effective-medium theory approach to ordering in Cu-Au alloys. Journal of Physics Condensed Matter, 1992, 4, 7191-7202.	0.7	18
602	Construction of transferable spherically averaged electron potentials. Journal of Physics Condensed Matter, 1994, 6, 5415-5421.	0.7	18
603	Exploring Scaling Relations for Chemisorption Energies on Transitionâ€Metalâ€Exchanged Zeolites ZSMâ€⊋2 and ZSMâ€5. ChemCatChem, 2016, 8, 767-772.	1.8	18
604	Direct Water Decomposition on Transition Metal Surfaces: Structural Dependence and Catalytic Screening. Catalysis Letters, 2016, 146, 718-724.	1.4	18
605	Calculated Diabatic Atom-Surface Potential-Energy Curves. Physica Scripta, 1986, 34, 77-83.	1.2	17
606	Analyzing the Case for Bifunctional Catalysis. Angewandte Chemie, 2016, 128, 5296-5300.	1.6	17
607	Theoretical and Experimental Studies of CoGa Catalysts for the Hydrogenation of CO2 to Methanol. Catalysis Letters, 2018, 148, 3583-3591.	1.4	17
608	Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 12433-12446.	2.5	17
609	The surface phonons of Cu(111). Journal of Electron Spectroscopy and Related Phenomena, 1990, 54-55, 237-244.	0.8	16
610	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. , 2010, , 280-284.		16
611	Firstâ€Principles Calculations of Fischer–Tropsch Processes Catalyzed by Nitrogenase Enzymes. ChemCatChem, 2013, 5, 732-736.	1.8	16
612	Tuning Methane Activation Chemistry on Alkaline Earth Metal Oxides by Doping. Journal of Physical Chemistry C, 2018, 122, 22544-22548.	1.5	16

#	Article	IF	CITATIONS
613	Neural Network Sampling of the Free Energy Landscape for Nitrogen Dissociation on Ruthenium. Journal of Physical Chemistry Letters, 2021, 12, 2954-2962.	2.1	16
614	Modeling the potassium promotion of CO bonding to Ni (100). Chemical Physics Letters, 1993, 214, 443-446.	1.2	15
615	Negative surface energy — clearing up confusion. Nature Materials, 2005, 4, 186-186.	13.3	15
616	Comment on "Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications― Journal of Physical Chemistry C, 2013, 117, 6914-6915.	1.5	15
617	A Highly Active Molybdenum Phosphide Catalyst for Methanol Synthesis from CO and CO ₂ . Angewandte Chemie, 2018, 130, 15265-15270.	1.6	15
618	Opportunities and Challenges in Electrolytic Propylene Epoxidation. Journal of Physical Chemistry Letters, 2022, 13, 2057-2063.	2.1	15
619	Subsurface Nitrogen Dissociation Kinetics in Lithium Metal from Metadynamics. Journal of Physical Chemistry C, 2020, 124, 26368-26378.	1.5	14
620	Micro-kinetic model of electrochemical carbon dioxide reduction over platinum in non-aqueous solvents. Physical Chemistry Chemical Physics, 2020, 22, 9040-9045.	1.3	14
621	Contraction of diatomic molecules upon chemisorption. Solid State Communications, 1978, 28, 899-902.	0.9	13
622	Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state. Surface Science, 2015, 640, 80-88.	0.8	13
623	Acetonitrile Transition Metal Interfaces from First Principles. Journal of Physical Chemistry Letters, 2020, 11, 9802-9811.	2.1	13
624	The reactivity of metal surfaces. Catalysis Letters, 1991, 9, 173-182.	1.4	12
625	Catalysis from first principles. Studies in Surface Science and Catalysis, 1999, , 3-10.	1.5	12
626	Steps, kinks, and segregation at metallic surfaces. Progress in Surface Science, 2000, 64, 193-198.	3.8	12
627	Electronic-Structure-Based Design of Ordered Alloys. MRS Bulletin, 2006, 31, 986-990.	1.7	12
628	Methanol Partial Oxidation on Ag(1 1 1) from First Principles. ChemCatChem, 2016, 8, 3621-3625.	1.8	12
629	The Role of Sodium in Tuning Product Distribution in Syngas Conversion by Rh Catalysts. Catalysis Letters, 2018, 148, 289-297.	1.4	12
630	Why ZnO is the Support for Cu in Methanol Synthesis? A Systematic Study of the Strong Metal Support Interactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 1722-1730.	3.2	12

#	Article	IF	CITATIONS
631	OH Binding Energy as a Universal Descriptor of the Potential of Zero Charge on Transition Metal Surfaces. Journal of Physical Chemistry C, 2022, 126, 5521-5528.	1.5	12
632	Limits to scaling relations between adsorption energies?. Journal of Chemical Physics, 2022, 156, .	1.2	12
633	First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions. Surface Science, 2011, 605, 582-592.	0.8	11
634	Theory nof chemisorption and heterogeneous catalysis. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1984, 127, 193-202.	0.9	10
635	Surface alloying in metalâ€onâ€metal epitaxial growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 1787-1789.	0.9	10
636	Incomplete melting of the Si(100) surface from molecular-dynamics simulations using the effective-medium tight-binding model. Surface Science, 1996, 360, 221-228.	0.8	10
637	Trends in Adsorption Energies of the Oxygenated Species on Single Platinum Atom Embedded in Carbon Nanotubes. Catalysis Letters, 2017, 147, 2689-2696.	1.4	10
638	From quantum physics to heterogeneous catalysis. Topics in Catalysis, 1994, 1, 385-403.	1.3	9
639	Das Katalysatorgenom. Angewandte Chemie, 2013, 125, 806-807.	1.6	9
640	Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate. Journal of Physical Chemistry C, 2017, 121, 28001-28006.	1.5	9
641	A cyclic electrochemical strategy to produce acetylene from CO ₂ , CH ₄ , or alternative carbon sources. Sustainable Energy and Fuels, 2020, 4, 2752-2759.	2.5	9
642	N ₂ Interaction with Fe Surfaces. Israel Journal of Chemistry, 1998, 38, 279-284.	1.0	8
643	Strongly Modified Scaling of CO Hydrogenation in Metal Supported TiO Nanostripes. ACS Catalysis, 2018, 8, 10555-10563.	5.5	8
644	Analysis of sulfur-induced selectivity changes for anhydrous methanol dehydrogenation on Ni(100) surfaces. Surface Science, 2013, 613, 58-62.	0.8	7
645	Toward Controlled Growth of Helicity-Specific Carbon Nanotubes. Journal of Physical Chemistry Letters, 2015, 6, 2232-2237.	2.1	7
646	Screened Hybrid Exact Exchange Correction Scheme for Adsorption Energies on Perovskite Oxides. Journal of Physical Chemistry C, 2015, 119, 17662-17666.	1.5	7
647	Effects of a conductive support on the bonding of oxygen containing molecules to transition metal oxide surfaces. Physical Chemistry Chemical Physics, 2020, 22, 26216-26222.	1.3	7
648	A Theoretical Study of Methanol Oxidation on RuO ₂ (110): Bridging the Pressure Gap. ACS Catalysis, 2017, 7, 4527-4534.	5.5	6

#	Article	IF	CITATIONS
649	Exploring the Effect of Gold Support on the Oxygen Reduction Reaction Activity of Metal Porphycenes. ChemCatChem, 2018, 10, 5505-5510.	1.8	6
650	Quantum motion of chemisorbed hydrogen. Journal of Electron Spectroscopy and Related Phenomena, 1986, 38, 313-315.	0.8	5
651	Fractal and Dendritic Growth of Surface Aggregates. Materials Research Society Symposia Proceedings, 1995, 407, 379.	0.1	5
652	Publisher's Note: Atomic and electronic structure ofMoS2nanoparticles [Phys. Rev. B67, 085410 (2003)]. Physical Review B, 2003, 67, .	1.1	5
653	The effect of surface relaxation on the N2 dissociation rate on stepped Ru: A transition state theory study. Journal of Chemical Physics, 2006, 124, 026102.	1.2	5
654	Effects of a New Electrochemical Cleaning Protocol on Ru@Pt Core-Shell ORR Catalysts. ECS Transactions, 2013, 58, 929-936.	0.3	5
655	Nonaqueous Solvent Adsorption on Transition Metal Surfaces with Density Functional Theory: Interaction of <i>N</i> , <i>N</i> -Dimethylformamide (DMF), Tetrahydrofuran (THF), and Dimethyl Sulfoxide (DMSO) with Ag, Cu, Pt, Rh, and Re Surfaces. Journal of Physical Chemistry C, 2021, 125, 21943-21957	1.5	5
656	STABILITY OF ADSORBED HYDROGEN ON Si(100) UNDER CHANGES OF THE SURFACE POTENTIAL. Surface Review and Letters, 1996, 03, 1227-1233.	0.5	3
657	Comment on "Cs-Induced Relaxation of the Cu(110) Surface― Physical Review Letters, 1997, 78, 158-158.	2.9	3
658	Chapter 8 Understanding Heterogeneous Catalysis from the Fundamentals. Handbook of Surface Science, 2008, 3, 269-340.	0.3	3
659	Sulphur Bonding in Transition Metal Sulphides and MoS2 Based Structures. , 1998, , 155-168.		3
660	Molecular Modeling and High-Throughput Experimentation (HTE): Meeting the Challenges of Catalysts, Chemicals and Materials Design. Oil and Gas Science and Technology, 2006, 61, 579-592.	1.4	3
661	Theoretical studies of molecular adsorption on metal surfaces. International Journal of Quantum Chemistry, 1983, 23, 1083-1090.	1.0	2
662	Melting a Copper Cluster: Critical-Droplet Theory. Europhysics Letters, 1994, 26, 557-557.	0.7	2
663	Surface chemistry in three dimensions: CO dissociation between two surfaces. Chemical Physics Letters, 2000, 322, 307-311.	1.2	2
664	Cyclic Voltammograms from First Principles. ECS Transactions, 2007, 11, 759-768.	0.3	2
665	Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories. ACS Catalysis, 2016, 6, 3227-3235.	5.5	2
666	A Combined Theoryâ€Experiment Analysis of the Surface Species in Lithiumâ€Mediated NH ₃ Electrosynthesis. ChemElectroChem, 2020, 7, 1513-1513.	1.7	2

#	Article	IF	CITATIONS
667	Analysing oxygen reduction electrocatalysis on transition metal doped niobium oxide(110). Physical Chemistry Chemical Physics, 0, , .	1.3	2
668	On the electronic factor in catalysis. Vacuum, 1983, 33, 876.	1.6	1
669	Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, , .		1
670	Phonon assisted rate processes at surfaces. Vacuum, 1983, 33, 875.	1.6	0
671	Equilibrium properties of hydrogen adsorbed on transition-metal surfaces. Vacuum, 1983, 33, 875.	1.6	0
672	Response to Letter to the Editor Journal of Catalysis - Volume 234, Issue 1. Journal of Catalysis, 2005, 234, 241-241.	3.1	0
673	Publisher's Note: Calculated formation and reaction energies of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>3 </mml:mn> <mml:mi>d </mml:mi> metal oxides using a hierarchy of exchange-correlation functionals [Phys. Rev. B < b>88 < /b>, 245204 (2013)]. Physical Review B. 2014, 89</mml:mrow></mml:math>	> 1.1	row>
674	Graphite formation on steam-reforming catalysts. Acta Crystallographica Section A: Foundations and Advances, 2002, 58, c158-c158.	0.3	0
675	Theoretical Description of Simple Electrode Processes. ECS Meeting Abstracts, 2006, , .	0.0	0
676	TOWARDS A THEORY OF HETEROGENEOUS CATALYSIS. , 2018, , .		0
677	Enhanced Oxygen Reduction Activity on Silver-Palladium Alloyed Thin Film Electrocatalysts in Alkaline Media. ECS Meeting Abstracts, 2020, MA2020-02, 2397-2397.	0.0	0