Dan Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/4515166/dan-zhao-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 16,162 124 234 h-index g-index citations papers 263 7.16 19,070 10.1 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
234	Potential applications of metal-organic frameworks. <i>Coordination Chemistry Reviews</i> , 2009 , 253, 3042-3	30 <u>6</u> 62	1235
233	Tuning the topology and functionality of metal-organic frameworks by ligand design. <i>Accounts of Chemical Research</i> , 2011 , 44, 123-33	24.3	859
232	An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5357-61	16.4	622
231	Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7241-4	16.4	527
230	Highly stable porous polymer networks with exceptionally high gas-uptake capacities. <i>Advanced Materials</i> , 2011 , 23, 3723-5	24	485
229	Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. Journal of the American Chemical Society, 2011, 133, 18126-9	16.4	479
228	Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. <i>Chemistry of Materials</i> , 2010 , 22, 5964-5972	9.6	466
227	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation. <i>Chemistry of Materials</i> , 2016 , 28, 1277-1285	9.6	404
226	The current status of hydrogen storage in metal B rganic frameworks. <i>Energy and Environmental Science</i> , 2008 , 1, 222	35.4	386
225	Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 10629-34	11.5	308
224	Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9186-8	16.4	297
223	Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. <i>Advanced Materials</i> , 2011 , 23, 90-3	24	295
222	Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. <i>Nature Communications</i> , 2017 , 8, 14460	17.4	290
221	Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks. <i>Advanced Materials</i> , 2014 , 26, 1093-7	24	270
220	A two-dimensional conjugated aromatic polymer via C-C coupling reaction. <i>Nature Chemistry</i> , 2017 , 9, 563-570	17.6	243
219	A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. <i>Carbon</i> , 2017 , 111, 641-650	10.4	233
218	A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. <i>Inorganic Chemistry</i> , 2015 , 54, 4862-8	5.1	232

(2012-2013)

2	217	Reversibility of anodic lithium in rechargeable lithium-oxygen batteries. <i>Nature Communications</i> , 2013 , 4, 2255	17.4	207	
2	216	Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. <i>Chemical Science</i> , 2012 , 3, 3200	9.4	205	
2	215	Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 18505-12	9.5	160	
2	214	Facile Preparation of Graphene Oxide Membranes for Gas Separation. <i>Chemistry of Materials</i> , 2016 , 28, 2921-2927	9.6	158	
2	213	Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. <i>Energy Storage Materials</i> , 2019 , 16, 243-250	19.4	157	
2	212	MetalBrganic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. <i>CrystEngComm</i> , 2017 , 19, 4066-4081	3.3	154	
2	211	CO2 Capture in Metal®rganic Framework Adsorbents: An Engineering Perspective. <i>Advanced Sustainable Systems</i> , 2019 , 3, 1800080	5.9	153	
2	210	Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4472-4480	16.4	152	
2	209	Room Temperature Batch and Continuous Flow Synthesis of Water-Stable Covalent Organic Frameworks (COFs). <i>Chemistry of Materials</i> , 2016 , 28, 5095-5101	9.6	150	
2	208	ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing. <i>Advanced Materials</i> , 2019 , 31, e1807161	24	141	
2	207	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401	24	141	
2	206	Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. <i>Chemical Science</i> , 2017 , 8, 2782-2789	9.4	131	
2	205	De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials. <i>Dalton Transactions</i> , 2015 , 44, 19018-40	4.3	129	
2	204	Ni-Doped Cobalt¶obalt Nitride Heterostructure Arrays for High-Power Supercapacitors. <i>ACS Energy Letters</i> , 2018 , 3, 2462-2469	20.1	129	
2	203	Direct Synthesis of Hierarchically Porous Metal Drganic Frameworks with High Stability and Strong Br disted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. <i>Chemistry of Materials</i> , 2016 , 28, 2659-2667	9.6	127	
2	202	A NbO-type metal-organic framework derived from a polyyne-coupled di-isophthalate linker formed in situ. <i>Chemical Communications</i> , 2010 , 46, 4196-8	5.8	126	
2	201	Electrocatalysts Derived from Metal-Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. <i>Small</i> , 2017 , 13, 1701143	11	125	
2	200	Tunability of band gaps in metal-organic frameworks. <i>Inorganic Chemistry</i> , 2012 , 51, 9039-44	5.1	123	

199	Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion. <i>ChemSusChem</i> , 2015 , 8, 3208-12	8.3	122
198	Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. <i>Nature Communications</i> , 2017 , 8, 1142	17.4	119
197	Robust Bifunctional Lanthanide Cluster Based Metal-Organic Frameworks (MOFs) for Tandem Deacetalization-Knoevenagel Reaction. <i>Inorganic Chemistry</i> , 2018 , 57, 2193-2198	5.1	118
196	Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal-Organic Frameworks for Optimal Carbon Dioxide Separation. <i>Inorganic Chemistry</i> , 2016 , 55, 1134-41	5.1	117
195	Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. <i>Journal of Membrane Science</i> , 2017 , 539, 213-223	9.6	116
194	Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. Journal of Membrane Science, 2019 , 573, 97-106	9.6	108
193	Process-Tracing Study on the Postassembly Modification of Highly Stable Zirconium Metal-Organic Cages. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6231-6234	16.4	105
192	Highly Porous Carbon Derived from MOF-5 as a Support of ORR Electrocatalysts for Fuel Cells. <i>ACS Applied Materials & Design Communication (Communication)</i> 17268-75	9.5	105
191	Recent advances in POM-organic frameworks and POM-organic polyhedra. <i>Coordination Chemistry Reviews</i> , 2019 , 397, 220-240	23.2	102
190	Alternatives to Cryogenic Distillation: Advanced Porous Materials in Adsorptive Light Olefin/Paraffin Separations. <i>Small</i> , 2019 , 15, e1900058	11	101
190 189		13	101
	Olefin/Paraffin Separations. <i>Small</i> , 2019 , 15, e1900058 Mixed matrix membranes composed of two-dimensional metalbrganic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane		
189	Olefin/Paraffin Separations. <i>Small</i> , 2019 , 15, e1900058 Mixed matrix membranes composed of two-dimensional metalligranic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20801-20810 Modulator Effects on the Water-Based Synthesis of Zr/Hf Metalligranic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. <i>Crystal Growth</i>	13	101
189 188	Olefin/Paraffin Separations. <i>Small</i> , 2019 , 15, e1900058 Mixed matrix membranes composed of two-dimensional metalligranic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20801-20810 Modulator Effects on the Water-Based Synthesis of Zr/Hf Metalligranic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. <i>Crystal Growth and Design</i> , 2016 , 16, 2295-2301 High CO2 separation performance of Pebax (CNTs/GTA mixed matrix membranes. <i>Journal of</i>	3.5	101
189 188 187	Olefin/Paraffin Separations. <i>Small</i> , 2019 , 15, e1900058 Mixed matrix membranes composed of two-dimensional metallinganic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20801-20810 Modulator Effects on the Water-Based Synthesis of Zr/Hf Metallinganic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. <i>Crystal Growth and Design</i> , 2016 , 16, 2295-2301 High CO2 separation performance of Pebaxii /CNTs/GTA mixed matrix membranes. <i>Journal of Membrane Science</i> , 2017 , 521, 104-113	3.5 9.6	1019997
189 188 187 186	Olefin/Paraffin Separations. Small, 2019, 15, e1900058 Mixed matrix membranes composed of two-dimensional metalBrganic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. Journal of Materials Chemistry A, 2015, 3, 20801-20810 Modulator Effects on the Water-Based Synthesis of Zr/Hf MetalDrganic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Crystal Growth and Design, 2016, 16, 2295-2301 High CO2 separation performance of Pebax //CNTs/GTA mixed matrix membranes. Journal of Membrane Science, 2017, 521, 104-113 lonized Zr-MOFs for highly efficient post-combustion CO 2 capture. Chemical Engineering Science, 2015, 124, 61-69 An Isoreticular Series of Metal Drganic Frameworks with Dendritic Hexacarboxylate Ligands and	3.5 9.6 4.4	101 99 97 91
189 188 187 186 185	Olefin/Paraffin Separations. <i>Small</i> , 2019 , 15, e1900058 Mixed matrix membranes composed of two-dimensional metallinganic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20801-20810 Modulator Effects on the Water-Based Synthesis of Zr/Hf Metallinganic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. <i>Crystal Growth and Design</i> , 2016 , 16, 2295-2301 High CO2 separation performance of Pebaxii /CNTs/GTA mixed matrix membranes. <i>Journal of Membrane Science</i> , 2017 , 521, 104-113 lonized Zr-MOFs for highly efficient post-combustion CO 2 capture. <i>Chemical Engineering Science</i> , 2015 , 124, 61-69 An Isoreticular Series of Metallinganic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity. <i>Angewandte Chemie</i> , 2010 , 122, 5485-5489 Confinement of Aggregation-Induced Emission Molecular Rotors in Ultrathin Two-Dimensional Porous Organic Nanosheets for Enhanced Molecular Recognition. <i>Journal of the American Chemical</i>	3.5 9.6 4.4 3.6	101 99 97 91 91 88

(2020-2019)

181	Solvent-Induced Control over Breathing Behavior in Flexible Metal-Organic Frameworks for Natural-Gas Delivery. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8073-8077	16.4	83
180	A stepwise transition from microporosity to mesoporosity in metal B rganic frameworks by thermal treatment. <i>Chemical Science</i> , 2011 , 2, 103-106	9.4	82
179	Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage. <i>Chemical Communications</i> , 2010 , 46, 7352-4	5.8	80
178	Fluorescent Porous Organic Frameworks Containing Molecular Rotors for Size-Selective Recognition. <i>Chemistry of Materials</i> , 2016 , 28, 7889-7897	9.6	79
177	Beyond Equilibrium: Metal Drganic Frameworks for Molecular Sieving and Kinetic Gas Separation. <i>Crystal Growth and Design</i> , 2017 , 17, 2291-2308	3.5	78
176	Bio-Inspired Robust Membranes Nanoengineered from Interpenetrating Polymer Networks of Polybenzimidazole/Polydopamine. <i>ACS Nano</i> , 2019 , 13, 125-133	16.7	78
175	Web-Like Interconnected Carbon Networks from NaCl-Assisted Pyrolysis of ZIF-8 for Highly Efficient Oxygen Reduction Catalysis. <i>Small</i> , 2018 , 14, e1704169	11	77
174	Atomic- and Molecular-Level Design of Functional Metal-Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. <i>Advanced Science</i> , 2019 , 6, 1901129	13.6	77
173	Sulfated Mesoporous Niobium Oxide Catalyzed 5-Hydroxymethylfurfural Formation from Sugars. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 14225-14233	3.9	77
172	Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 4139-4169	3.9	76
171	Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification. <i>Chemistry of Materials</i> , 2019 , 31, 146-160	9.6	75
170	A combinatorial approach towards water-stable metal-organic frameworks for highly efficient carbon dioxide separation. <i>ChemSusChem</i> , 2014 , 7, 2791-5	8.3	68
169	Pressure-responsive curvature change of a "rigid" geodesic ligand in a (3,24)-connected mesoporous metal-organic framework. <i>Inorganic Chemistry</i> , 2011 , 50, 10528-30	5.1	68
168	Counterion-assisted shaping of nanocluster supracrystals. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 184-9	16.4	66
167	A highly stable metal-organic framework with optimum aperture size for CO2 capture. <i>AICHE Journal</i> , 2017 , 63, 4103-4114	3.6	64
166	Combination of Optimization and Metalated-Ligand Exchange: An Effective Approach to Functionalize UiO-66(Zr) MOFs for CO2 Separation. <i>Chemistry - A European Journal</i> , 2015 , 21, 17246-55	4.8	64
165	Activation of sucrose-derived carbon spheres for high-performance supercapacitor electrodes. <i>RSC Advances</i> , 2015 , 5, 9307-9313	3.7	61
164	Efficient Trapping of Trace Acetylene from Ethylene in an Ultramicroporous Metal-Organic Framework: Synergistic Effect of High-Density Open Metal and Electronegative Sites. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18927-18932	16.4	56

163	Isoreticular covalent organic frameworks for hydrocarbon uptake and separation: the important role of monomer planarity. <i>CrystEngComm</i> , 2017 , 19, 4899-4904	3.3	55
162	Self-Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Live-Cell Imaging. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10151-10159	16.4	55
161	Improving Water-Treatment Performance of Zirconium Metal-Organic Framework Membranes by Postsynthetic Defect Healing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 37848-37855	9.5	54
160	On-Chip Tailorability of Capacitive Gas Sensors Integrated with Metal-Organic Framework Films. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14089-14094	16.4	53
159	Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor. <i>Microporous and Mesoporous Materials</i> , 2017 , 253, 169-176	5.3	52
158	Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4549-4560	13	51
157	Metal-organic frameworks (MOFs) as precursors towards TiOx/C composites for photodegradation of organic dye. <i>RSC Advances</i> , 2014 , 4, 34221-34225	3.7	50
156	Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. <i>Chemical Communications</i> , 2016 , 52, 8087-90	5.8	48
155	Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe in aqueous solution. <i>Chemical Communications</i> , 2019 , 55, 4727-4730	5.8	46
154	Thermo-Responsive MOF/Polymer Composites for Temperature-Mediated Water Capture and Release. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11003-11009	16.4	46
153	A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications. <i>Applied Energy</i> , 2020 , 269, 115070	10.7	46
152	Breathing-induced new phase transition in an MIL-53(Al)-NH metal-organic framework under high methane pressures. <i>Chemical Communications</i> , 2017 , 53, 8118-8121	5.8	45
151	Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity. <i>Scientific Reports</i> , 2017 , 7, 41640	4.9	44
150	Silver-Decorated Hafnium Metal©rganic Framework for Ethylene/Ethane Separation. <i>Industrial</i> & amp; Engineering Chemistry Research, 2017, 56, 4508-4516	3.9	44
149	3D-Printing of Pure Metal®rganic Framework Monoliths 2019 , 1, 147-153		44
148	Synthesis, Structural Characterization, and Photocatalytic Performance of Mesoporous W-MCM-48. Journal of Physical Chemistry C, 2010 , 114, 15728-15734	3.8	43
147	Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells. <i>ACS Applied Materials & Direct Methanol Fuel Cells. ACS Applied Methanol Fuel Cells & Direct Metha</i>	9.5	42
146	Enhanced Polymer Crystallinity in Mixed-Matrix Membranes Induced by Metal-Organic Framework Nanosheets for Efficient CO Capture. <i>ACS Applied Materials & Description</i> (2018), 10, 43095-43103	9.5	42

145	Scalable and Sustainable Synthesis of Advanced Porous Materials. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 3647-3670	8.3	41	
144	The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. <i>Chemical Society Reviews</i> , 2021 , 50, 4629-4683	58.5	41	
143	Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12995-13002	16.4	40	
142	Influence of cationic and non-ionic surfactants on the kinetics of mixed hydrogen/tetrahydrofuran hydrates. <i>Chemical Engineering Science</i> , 2015 , 132, 186-199	4.4	39	
141	Aggregation-Induced Emission-Responsive Metal Drganic Frameworks. <i>Chemistry of Materials</i> , 2020 , 32, 6706-6720	9.6	38	
140	Janus Electrocatalysts Containing MOF-Derived Carbon Networks and NiFe-LDH Nanoplates for Rechargeable ZincAir Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1784-1792	6.1	37	
139	Introduction of cavities up to 4 nm into a hierarchically-assembled metal-organic framework using an angular, tetratopic ligand. <i>Chemical Communications</i> , 2010 , 46, 5223-5	5.8	35	
138	Functionalization-Induced Breathing Control in Metal©rganic Frameworks for Methane Storage with High Deliverable Capacity. <i>Chemistry of Materials</i> , 2019 , 31, 2842-2847	9.6	34	
137	Mechanical Properties of Microcrystalline Metal-Organic Frameworks (MOFs) Measured by Bimodal Amplitude Modulated-Frequency Modulated Atomic Force Microscopy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 32202-32210	9.5	33	
136	MelamineEerephthalaldehydeIIthium complex: a porous organic network based single ion electrolyte for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5132-5139	13	33	
135	Enhanced catalytic activity of a hierarchical porous metal®rganic framework CuBTC. <i>CrystEngComm</i> , 2015 , 17, 7124-7129	3.3	31	
134	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH)2 Metal®rganic Framework Nanoparticles for Efficient H2/CO2 Separation. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 7933-7940	3.9	31	
133	Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. <i>Chemical Engineering Journal</i> , 2021 , 403, 126333	14.7	31	
132	MOF-Derived Carbon Networks with Atomically Dispersed FeNx Sites for Oxygen Reduction Reaction Catalysis in Acidic Media 2019 , 1, 37-43		30	
131	Probing the Microporous Structure of Silica Shell Via Aggregation-Induced Emission in Au(I)-Thiolate@SiO Nanoparticle. <i>Small</i> , 2016 , 12, 6537-6541	11	29	
130	Metal®rganic Frameworks with Reduced Hydrophilicity for Postcombustion CO2 Capture from Wet Flue Gas. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11904-11912	8.3	29	
129	Synthesis, structure, and magnetic and catalytic properties of metal frameworks with 2,2Qdinitro-4,4Qbiphenyldicarboxylate and imidazole-containing tripodal ligands. <i>Dalton Transactions</i> , 2016 , 45, 8816-23	4.3	29	
128	Plasticization resistance-enhanced CO2 separation at elevated pressures by mixed matrix membranes containing flexible metal-organic framework fillers. <i>Journal of Membrane Science</i> , 2019 , 582, 103-110	9.6	28	

127	Metal Drganic Frameworks (MOFs)-boosted filtration membrane technology for water sustainability. <i>APL Materials</i> , 2020 , 8, 040902	5.7	28
126	Biocompatible Cyclodextrin-Based Metal Organic Frameworks for Long-Term Sustained Release of Fragrances. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 19767-19777	3.9	27
125	Harnessing solvent effects to integrate alkylamine into metalBrganic frameworks for exceptionally high CO2 uptake. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7867-7874	13	27
124	Optimal Pore Chemistry in an Ultramicroporous Metal-Organic Framework for Benchmark Inverse CO /C H Separation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17198-17204	16.4	27
123	Encapsulation and controlled release of fragrances from functionalized porous metal ö rganic frameworks. <i>AICHE Journal</i> , 2019 , 65, 491-499	3.6	27
122	Indium-Based Heterometal Drganic Frameworks with Different Nanoscale Cages: Syntheses, Structures, and Gas Adsorption Properties. <i>Crystal Growth and Design</i> , 2017 , 17, 1159-1165	3.5	26
121	A Triphasic Modulated Hydrothermal Approach for the Synthesis of Multivariate Metal@rganic Frameworks with Hydrophobic Moieties for Highly Efficient Moisture-Resistant CO2 Capture. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1700092	5.9	26
120	Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing. <i>ACS Sensors</i> , 2020 , 5, 1474-1481	9.2	25
119	Mechano-assisted synthesis of an ultramicroporous metal-organic framework for trace CO capture. <i>Chemical Communications</i> , 2020 , 56, 7726-7729	5.8	24
118	Pore Size Reduction in Zirconium Metal©rganic Frameworks for Ethylene/Ethane Separation. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 7118-7126	8.3	24
117	Highly efficient photocatalysts by pyrolyzing a ZnIIi heterometallic metalBrganic framework. CrystEngComm, 2016 , 18, 4046-4052	3.3	23
116	Dimensional Impact of Metal®rganic Frameworks in Catalyzing Photoinduced Hydrogen Evolution and Cyanosilylation Reactions. <i>ACS Applied Energy Materials</i> , 2019 , 2, 298-304	6.1	23
115	Hydrazone-based covalent organic frameworks for Lewis acid catalysis. <i>Dalton Transactions</i> , 2018 , 47, 13824-13829	4.3	23
114	Pressure-Responsive Two-Dimensional Metal-Organic Framework Composite Membranes for CO Separation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11318-11325	16.4	22
113	Impacts of Imidazolate Ligand on Performance of Zeolitic-Imidazolate Framework-Derived Oxygen Reduction Catalysts. <i>ACS Energy Letters</i> , 2019 , 4, 2500-2507	20.1	21
112	A pH-responsive phase transformation of a sulfonated metal B rganic framework from amorphous to crystalline for efficient CO2 capture. <i>CrystEngComm</i> , 2016 , 18, 2803-2807	3.3	21
111	Structural-failure resistance of metal-organic frameworks toward multiple-cycle CO sorption. <i>Chemical Communications</i> , 2017 , 53, 8653-8656	5.8	21
110	Influence of indomethacin-loading on the micellization and drug release of thermosensitive dextran-graft-poly(N-isopropylacrylamide). <i>Reactive and Functional Polymers</i> , 2011 , 71, 820-827	4.6	21

(2021-2020)

109	Cobalt-containing covalent organic frameworks for visible light-driven hydrogen evolution. <i>Science China Chemistry</i> , 2020 , 63, 192-197	7.9	21
108	Efficient Trapping of Trace Acetylene from Ethylene in an Ultramicroporous Metal©rganic Framework: Synergistic Effect of High-Density Open Metal and Electronegative Sites. <i>Angewandte Chemie</i> , 2020 , 132, 19089-19094	3.6	21
107	Fe/Fe C/N-Doped Carbon Materials from Metal-Organic Framework Composites as Highly Efficient Oxygen Reduction Reaction Electrocatalysts. <i>ChemPlusChem</i> , 2016 , 81, 718-723	2.8	21
106	Cluster nuclearity control and modulated hydrothermal synthesis of functionalized Zr metal-organic frameworks. <i>Dalton Transactions</i> , 2019 , 48, 7069-7073	4.3	20
105	Multivariate Polycrystalline Metal-Organic Framework Membranes for CO/CH Separation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17716-17723	16.4	20
104	Mechanical Properties of Shaped Metal-Organic Frameworks. <i>Topics in Current Chemistry</i> , 2019 , 377, 25	7.2	19
103	Novel hetero-bimetallic coordination polymer as a single source of highly dispersed Cu/Ni nanoparticles for efficient photocatalytic water splitting. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1816-18	3 27 8	19
102	Microfocused X-ray study on precipitate formation in the separator region of nonaqueous Li-O(2) batteries. <i>ChemSusChem</i> , 2012 , 5, 2421-6	8.3	19
101	Thin-Film Nanocomposite Membranes Containing Water-Stable Zirconium Metal D rganic Cages for Desalination 2021 , 3, 268-274		19
100	Modulated Hydrothermal Synthesis of Highly Stable MOF-808(Hf) for Methane Storage. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 17042-17053	8.3	18
99	A new insight for photocatalytic hydrogen production by a Cu/Ni based cyanide bridged polymer as a co-catalyst on titania support in glycerol water mixture. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 2508-2518	6.7	18
98	Metal-Organic Framework Based Gas Sensors <i>Advanced Science</i> , 2021 , e2104374	13.6	18
97	Encapsulation and Protection of Ultrathin Two-Dimensional Porous Organic Nanosheets within Biocompatible Metal@rganic Frameworks for Live-Cell Imaging. <i>Chemistry of Materials</i> , 2019 , 31, 4897-4	1912	17
96	Multiscale Design of Flexible Metal©rganic Frameworks. <i>Trends in Chemistry</i> , 2020 , 2, 199-213	14.8	17
95	Two-Dimensional Membranes: New Paradigms for High-Performance Separation Membranes. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 2241-2270	4.5	17
94	Probing nanoscale functionalities of metal-organic framework nanocrystals. <i>Nanoscale</i> , 2017 , 9, 12163-	1 2.1/ 69	17
93	Porous organic cages as synthetic water channels. <i>Nature Communications</i> , 2020 , 11, 4927	17.4	17
92	Tetrazole-Functionalized Zirconium Metal-Organic Cages for Efficient C H /C H and C H /CO Separations. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17338-17343	16.4	17

91	Luminescent Metal-Organic Frameworks for the Detection and Discrimination of o-Xylene from Xylene Isomers. <i>Inorganic Chemistry</i> , 2018 , 57, 13631-13639	5.1	16
90	Polycrystalline zirconium metal-organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration. <i>Journal of Membrane Science</i> , 2020 , 615, 118551	9.6	14
89	Ultrathin covalent organic framework film as membrane gutter layer for high-permeance CO2 capture. <i>Journal of Membrane Science</i> , 2021 , 632, 119384	9.6	14
88	Ambient temperature hydrogen storage in porous materials with exposed metal sites. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 6801-6809	6.7	13
87	Polycrystalline rare-earth metal-organic framework membranes with in-situ healing ability for efficient alcohol dehydration. <i>Journal of Membrane Science</i> , 2020 , 610, 118239	9.6	13
86	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. <i>Coordination Chemistry Reviews</i> , 2021 , 437, 213794	23.2	13
85	Metal-organic frameworks for C6\(\mathbb{\texts}\)8 hydrocarbon separations. <i>EnergyChem</i> , 2021 , 3, 100057	36.9	13
84	Radiation Enhancement by Graphene Oxide on Microelectromechanical System Emitters for Highly Selective Gas Sensing. <i>ACS Sensors</i> , 2019 , 4, 2746-2753	9.2	12
83	Solvent-Induced Control over Breathing Behavior in Flexible Metal Drganic Frameworks for Natural-Gas Delivery. <i>Angewandte Chemie</i> , 2019 , 131, 8157-8161	3.6	12
82	Tying amines down for stable CO capture. <i>Science</i> , 2020 , 369, 372-373	33.3	12
81	CelluMOFs: Green, Facile, and Flexible Metal-Organic Frameworks for Versatile Applications. <i>Advanced Functional Materials</i> ,2105395	15.6	12
80	Ultrathin Covalent Organic Framework Membranes via a Multi-Interfacial Engineering Strategy for Gas Separation. <i>Advanced Materials</i> , 2021 , e2104946	24	12
79	Selective Gas Permeation in Mixed Matrix Membranes Accelerated by Hollow Ionic Covalent Organic Polymers. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1564-1573	8.3	11
78	Heating-driven assembly of covalent organic framework nanosheets for gas separation. <i>Journal of Membrane Science</i> , 2021 , 632, 119326	9.6	11
77	Covalent organic nanosheets with large lateral size and high aspect ratio synthesized by Langmuir-Blodgett method. <i>Chinese Chemical Letters</i> , 2018 , 29, 869-872	8.1	10
76	On-Chip Tailorability of Capacitive Gas Sensors Integrated with Metal©rganic Framework Films. <i>Angewandte Chemie</i> , 2019 , 131, 14227-14232	3.6	10
75	Counterion-Assisted Shaping of Nanocluster Supracrystals. <i>Angewandte Chemie</i> , 2015 , 127, 186-191	3.6	10
74	Evaluation of Schiff-Base Covalent Organic Frameworks for CO2 Capture: Structure P erformance Relationships, Stability, and Performance under Wet Conditions. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 332-341	8.3	10

(2022-2020)

73	Thermo-Responsive MOF/Polymer Composites for Temperature-Mediated Water Capture and Release. <i>Angewandte Chemie</i> , 2020 , 132, 11096-11102	3.6	9
72	A 2D metalBrganic framework composed of a bi-functional ligand with ultra-micropores for post-combustion CO2 capture. <i>RSC Advances</i> , 2015 , 5, 47384-47389	3.7	9
71	A porous Sm(III) coordination nanotube with hydrophobic and hydrophilic channels. <i>Dalton Transactions</i> , 2013 , 42, 54-7	4.3	8
70	Self-Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Live-Cell Imaging. <i>Angewandte Chemie</i> , 2020 , 132, 10237-10245	3.6	8
69	Solution-Processable Metal-Organic Framework Nanosheets with Variable Functionalities. <i>Advanced Materials</i> , 2021 , 33, e2101257	24	8
68	Is Porosity at the MOF/Polymer Interface Necessarily an Obstacle to Optimal Gas-Separation Performances in Mixed Matrix Membranes? 2021 , 3, 344-350		8
67	In Situ Formation of Micropore-Rich Titanium Dioxide from Metal-Organic Framework Templates. <i>ACS Applied Materials & Dioxide State </i>	9.5	8
66	Solution-reprocessable microporous polymeric adsorbents for carbon dioxide capture. <i>AICHE Journal</i> , 2018 , 64, 3376-3389	3.6	7
65	Tuning the release rate of volatile molecules by pore surface engineering in metal-organic frameworks. <i>Chinese Chemical Letters</i> , 2021 , 32, 1988-1992	8.1	7
64	Homoporous hybrid membranes containing metal-organic cages for gas separation. <i>Journal of Membrane Science</i> , 2021 , 636, 119564	9.6	7
63	Biosensors: ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing (Adv. Mater. 11/2019). <i>Advanced Materials</i> , 2019 , 31, 1970076	24	6
62	Ultralarge Free-Standing Imine-Based Covalent Organic Framework Membranes Fabricated via Compression <i>Advanced Science</i> , 2022 , e2104643	13.6	6
61	Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study <i>Nature Communications</i> , 2022 , 13, 1370	17.4	6
60	On-Chip Template-Directed Conversion of Metal Hydroxides to Metal-Organic Framework Films with Enhanced Adhesion. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 36715-36722	9.5	5
59	Pressure-Responsive Two-Dimensional Metal©rganic Framework Composite Membranes for CO2 Separation. <i>Angewandte Chemie</i> , 2021 , 133, 11419-11426	3.6	5
58	Molecular-Rotor-Driven Advanced Porous Materials. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16279-16292	16.4	5
57	Optimal Pore Chemistry in an Ultramicroporous Metal Drganic Framework for Benchmark Inverse CO2/C2H2 Separation. <i>Angewandte Chemie</i> , 2021 , 133, 17335-17341	3.6	5
56	Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. <i>Journal of Membrane Science</i> , 2022 , 641, 119912	9.6	5

55	Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. <i>Energy Storage Materials</i> , 2022 , 48, 82-89	19.4	5
54	ZnAir Batteries: Web-Like Interconnected Carbon Networks from NaCl-Assisted Pyrolysis of ZIF-8 for Highly Efficient Oxygen Reduction Catalysis (Small 16/2018). <i>Small</i> , 2018 , 14, 1870070	11	4
53	Evaluation of strongly acidic ion-exchange catalysts and the desulfonation study in the isobutylene dimerization reaction. <i>Journal of Applied Polymer Science</i> , 2013 , 127, 926-932	2.9	4
52	Synthesis and development of metalorganic frameworks 2020 , 3-43		4
51	Heterogeneous postassembly modification of zirconium metal-organic cages in supramolecular frameworks. <i>Chemical Communications</i> , 2021 , 57, 6276-6279	5.8	4
50	Membrane Technology: Advanced Porous Materials in Mixed Matrix Membranes (Adv. Mater. 47/2018). <i>Advanced Materials</i> , 2018 , 30, 1870355	24	4
49	Low-Cost, High-Efficiency Non-PGM Cathode Catalysts Using MOFs as Precursors. <i>ECS Transactions</i> , 2013 , 50, 1861-1868	1	3
48	Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation 2022 , 2, 100017		3
47	Tailorable infrared emission of microelectromechanical system-based thermal emitters with NiO films for gas sensing. <i>Optics Express</i> , 2021 , 29, 19084-19093	3.3	3
46	Adsorption-Based CO2 Capture: CO2 Capture in Metal®rganic Framework Adsorbents: An Engineering Perspective (Adv. Sustainable Syst. 1/2019). <i>Advanced Sustainable Systems</i> , 2019 , 3, 197000	2 5.9	3
45	Accelerated Formation Kinetics of a Multicomponent Metal-Organic Framework Derived from Preferential Site Occupancy. <i>Inorganic Chemistry</i> , 2020 , 59, 9350-9355	5.1	2
44	Understanding of Electrolyte Stability and Its Impact to Lifespan of Li-O2 Battery. <i>ECS Transactions</i> , 2013 , 50, 37-45	1	2
43	POLYMERIZATION WITHIN CONFINED NANOCHANNELS OF POROUS METAL-ORGANIC FRAMEWORKS. <i>Journal of Molecular and Engineering Materials</i> , 2013 , 01, 1330001	1.3	2
42	A metal-organic framework (MOF)-based temperature swing adsorption cycle for postcombustion CO2 capture from wet flue gas. <i>Chemical Engineering Science</i> , 2022 , 250, 117399	4.4	2
41	Facile Synthesis of a Metal Drganic Framework for Removal of Methyl Blue from Water: First-Year Undergraduate Teaching Lab. <i>Journal of Chemical Education</i> , 2020 , 97, 4145-4151	2.4	2
40	Tetrazole-Functionalized Zirconium Metal-Organic Cages for Efficient C2H2/C2H4 and C2H2/CO2 Separations. <i>Angewandte Chemie</i> , 2021 , 133, 17478-17483	3.6	2
39	Silica Nanoparticles: Probing the Microporous Structure of Silica Shell Via Aggregation-Induced Emission in Au(I)-Thiolate@SiO2 Nanoparticle (Small 47/2016). <i>Small</i> , 2016 , 12, 6536-6536	11	2
38	Novel photo-functional material based on homo-metallic cyanide bridged nickel coordination polymer and titania for hydrogen generation. <i>Inorganica Chimica Acta</i> , 2019 , 486, 684-693	2.7	2

37	Biogas upgrading and valorization to single-cell protein in a bioinorganic electrosynthesis system. <i>Chemical Engineering Journal</i> , 2021 , 426, 131837	14.7	2
36	Stabilization of lithium metal anodes by conductive metal o rganic framework architectures. Journal of Materials Chemistry A, 2021 , 9, 12099-12108	13	2
35	Metal-Organic Frameworks Based Heterogeneous Catalysts for Biomass Conversion. <i>Series on Chemistry, Energy and the Environment</i> , 2018 , 495-518	0.2	1
34	Electrocatalysts: Highly Efficient Non-Precious Metal Electrocatalysts Prepared from One-Pot Synthesized Zeolitic Imidazolate Frameworks (Adv. Mater. 7/2014). <i>Advanced Materials</i> , 2014 , 26, 1092-	1 09 2	1
33	METAL-ORGANIC FRAMEWORKS 2011 , 37-64		1
32	Porous Polymer Networks: Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities (Adv. Mater. 32/2011). <i>Advanced Materials</i> , 2011 , 23, 3608-3608	24	1
31	A breathing A4 paper by in situ growth of green metal B rganic frameworks for air freshening and cleaning. <i>Chinese Journal of Chemical Engineering</i> , 2021 ,	3.2	1
30	Polycrystalline Iron(III) metal-organic framework membranes for organic solvent nanofiltration with high permeance. <i>Journal of Membrane Science</i> , 2022 , 644, 120130	9.6	1
29	Molecular-Rotor-Driven Advanced Porous Materials. <i>Angewandte Chemie</i> , 2021 , 133, 16415-16428	3.6	1
28	InnenrEktitelbild: Pressure-Responsive Two-Dimensional Metal©rganic Framework Composite Membranes for CO2 Separation (Angew. Chem. 20/2021). <i>Angewandte Chemie</i> , 2021 , 133, 11635-11635	3.6	1
27	Adsorbed Natural Gas Storage for Onboard Applications. Advanced Sustainable Systems, 2021, 5, 200020	09 .9	1
26	Liquid Membrane Technology for Sustainable Separations 2022 , 297-341		1
25	Microfluidic Platforms for Cell Sorting 2022 , 653-695		1
24	The preparation and characterization of gel-mixed matrix membranes (g-MMMs) with high CO2 permeability and stability performance. <i>Journal of Membrane Science</i> , 2022 , 652, 120471	9.6	1
23	Metal-Organic Frameworks: Solution-Processable Metal Drganic Framework Nanosheets with Variable Functionalities (Adv. Mater. 29/2021). <i>Advanced Materials</i> , 2021 , 33, 2170228	24	Ο
22	Sustainable Separations Using Organic Solvent Nanofiltration 2022 , 697-729		O
21	REktitelbild: Thermo-Responsive MOF/Polymer Composites for Temperature-Mediated Water Capture and Release (Angew. Chem. 27/2020). <i>Angewandte Chemie</i> , 2020 , 132, 11253-11253	3.6	
20	Titelbild: On-Chip Tailorability of Capacitive Gas Sensors Integrated with Metal D rganic Framework Films (Angew. Chem. 40/2019). <i>Angewandte Chemie</i> , 2019 , 131, 14137-14137	3.6	

A three-dimensional manganese(II) coordination polymer with two functional properties: magnetism and photochemical detection. Acta Crystallographica Section C, Structural Chemistry, 19 0.8 2021, 77, 782-789 Titelbild: Efficient Trapping of Trace Acetylene from Ethylene in an Ultramicroporous MetalDrganic Framework: Synergistic Effect of High-Density Open Metal and Electronegative 18 3.6 Sites (Angew. Chem. 43/2020). Angewandte Chemie, 2020, 132, 18981-18981 Deep Eutectic Solvents for Sustainable Separation Processes 2022, 605-652 17 Adsorption Processes for Seawater Desalination 2022, 401-429 16 Cellulose Nanofibers for Sustainable Separations 2022, 563-589 15 Toward Green Extraction Processes 2022, 519-561 14 Recovery of Solvents and Fine Chemicals 2022, 483-518 13 Sustainable Separations in the Chemical Engineering Curriculum 2022, 731-740 12 Separation Processes for Sustainable Produced Water Treatment and Management 2022, 105-154 11 Flow Technologies for Efficient Separations 2022, 239-259 10 The Role of Chemical Looping in Industrial Gas Separation 2022, 199-237 9 Membrane-Enabled Sustainable Biofuel Production 2022, 343-365 Recycling of Lithium Batteries 2022, 591-603 Janus Membranes for Water Purification and Gas Separation 2022, 367-400 Sustainable Distillation Processes 2022, 431-481 5 Sustainable Features of Centrifugal Partition Chromatography 2022, 261-295 Electrochemically Mediated Sustainable Separations in Water 2022, 1-62 Applications of Ultrasound in Separation Processes 2022, 155-197

LIST OF PUBLICATIONS

Green and Sustainable Extraction of High-Value Compounds **2022**, 63-104