S Jungsuttiwong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/451514/publications.pdf

Version: 2024-02-01

56 papers

1,590 citations

257450 24 h-index 315739 38 g-index

56 all docs

56 docs citations

56 times ranked 2006 citing authors

#	Article	IF	Citations
1	Turn-on fluorescent probe towards glyphosate and Cr ³⁺ based on Cd(<scp>ii</scp>)-metal organic framework with Lewis basic sites. Inorganic Chemistry Frontiers, 2021, 8, 977-988.	6.0	27
2	Ti ₄ -Decorated B/N-doped graphene as a high-capacity hydrogen storage material: a DFT study. Dalton Transactions, 2021, 50, 11398-11411.	3.3	7
3	Formic acid dehydrogenation over single atom Pd-deposited carbon nanocones for hydrogen production: a mechanistic DFT study. Molecular Systems Design and Engineering, 2021, 6, 609-626.	3.4	4
4	Co-embedded sulfur vacant MoS ₂ monolayer as a promising catalyst for formaldehyde oxidation: a theoretical evaluation. New Journal of Chemistry, 2021, 45, 17407-17417.	2.8	2
5	Mimicking Peroxidase-Like Activity of Nitrogen-Doped Carbon Dots (N-CDs) Coupled with a Laminated Three-Dimensional Microfluidic Paper-Based Analytical Device (Laminated 3D-Î ¹ /4PAD) for Smart Sensing of Total Cholesterol from Whole Blood. Analytical Chemistry, 2021, 93, 6989-6999.	6.5	60
6	Antibacterial and Antifungal Polyketides from the Fungus <i>Aspergillus unguis</i> PSU-MF16. Journal of Natural Products, 2021, 84, 1498-1506.	3.0	25
7	Conjugated Copolymers That Shouldn't Be. Angewandte Chemie, 2021, 133, 11215-11219.	2.0	0
8	Conjugated Copolymers That Shouldn't Be. Angewandte Chemie - International Edition, 2021, 60, 11115-11119.	13.8	25
9	Theoretical Study on Factors Influencing the Efficiency of D–π′–A′–π–A Isoindigo-Based Sensitizer Dye-Sensitized Solar Cells. Journal of Electronic Materials, 2020, 49, 318-332.	for 2.2	11
10	DFT Study of Catalytic CO ₂ Hydrogenation over Pt-Decorated Carbon Nanocones: H ₂ Dissociation Combined with the Spillover Mechanism. Journal of Physical Chemistry C, 2020, 124, 1941-1949.	3.1	26
11	Effect of thiophene/furan substitution on organic field effect transistor properties of arylthiadiazole based organic semiconductors. Journal of Materials Chemistry C, 2020, 8, 17297-17306.	5.5	13
12	Removal of H ₂ S to produce hydrogen in the presence of CO on a transition metal-doped ZSM-12 catalyst: a DFT mechanistic study. Physical Chemistry Chemical Physics, 2020, 22, 19877-19887.	2.8	6
13	Unconventional Conjugation via vinylMeSi(Oâ^') ₂ Siloxane Bridges May Imbue Semiconducting Properties in [vinyl(Me)SiO(PhSiO _{1.5}) ₈ OSi(Me)vinyl-Ar] Double-Decker Copolymers. ACS Applied Polymer Materials, 2020, 2, 3894-3907.	4.4	13
14	Theoretical mechanistic study of CO catalytic oxidation by O2 on an ultra-small 13-atom bimetallic Ag7Au6 cluster. Applied Catalysis A: General, 2020, 595, 117505.	4.3	12
15	Photophysical Properties of Partially Functionalized Phenylsilsesquioxane: [RSiO _{1.5}] ₇ [Me/nPrSiO _{1.5}] and [RSiO _{1.5}] ₇ [O _{0.5} SiMe ₃] ₃ (R =) Tj ETQq1 1 0.78	4 3.1 84 rgBT	i⁄averlock 1
16	2019, 52, 4000-4019. Multi step energy transfer between three Si_LTL and SiGe_LTL zeolite-loaded dyes. Journal of Porous Materials, 2018, 25, 1381-1389.	2.6	5
17	Influence of hydrogen spillover on Pt-decorated carbon nanocones for enhancing hydrogen storage capacity: A DFT mechanistic study. Physical Chemistry Chemical Physics, 2018, 20, 21194-21203.	2.8	35
18	Catalytic reduction mechanism of deoxygenation of NO <i>via</i> the CO-reaction pathway using nanoalloy Ag ₇ Au ₆ clusters: density functional theory investigation. New Journal of Chemistry, 2018, 42, 14120-14127.	2.8	8

#	Article	IF	CITATIONS
19	Theoretical rationalization for reduced charge recombination in bulky carbazoleâ€based sensitizers in solar cells. Journal of Computational Chemistry, 2017, 38, 901-909.	3.3	2
20	Significant enhancement in the performance of porphyrin for dye-sensitized solar cells: aggregation control using chenodeoxycholic acid. New Journal of Chemistry, 2017, 41, 7081-7091.	2.8	17
21	Improvement of D–π–A organic dye-based dye-sensitized solar cell performance by simple triphenylamine donor substitutions on the π-linker of the dye. Materials Chemistry Frontiers, 2017, 1, 1059-1072.	5.9	40
22	Combined experimental and theoretical investigation on Fluorescence Resonance Energy Transfer of dye loaded on LTL zeolite. Microporous and Mesoporous Materials, 2017, 241, 372-382.	4.4	17
23	(D–π–) ₂ D–π–Aâ€Type Organic Dyes for Efficient Dyeâ€Sensitized Solar Cells. European Jou of Organic Chemistry, 2016, 2016, 2528-2538.	ırnal 2.4	12
24	New D–D–π–A type organic dyes having carbazol-N-yl phenothiazine moiety as a donor (D–D) unit for efficient dye-sensitized solar cells: experimental and theoretical studies. RSC Advances, 2016, 6, 38481-38493.	3.6	16
25	Synthesis, physical and electroluminescence properties of 3,6-dipyrenylcarbazole end capped oligofluorenes. RSC Advances, 2015, 5, 26569-26579.	3.6	3
26	Host–guest composite materials of dyes loaded zeolite LTL for antenna applications. Journal of Luminescence, 2015, 161, 31-36.	3.1	7
27	Linearly π-conjugated oligothiophenes as simple metal-free sensitizers for dye-sensitized solar cells. Journal of Materials Chemistry C, 2015, 3, 7756-7761.	5.5	23
28	Multi-triphenylamine-substituted bis(thiophenyl)benzothiadiazoles as highly efficient solution-processed non-doped red light-emitters for OLEDs. Journal of Materials Chemistry C, 2015, 3, 3081-3086.	5.5	23
29	Oligoarylenes end-capped with carbazol-N-yl-carbazole as color tunable light-emitting and hole-transporting materials for solution-processed OLEDs. RSC Advances, 2015, 5, 16422-16432.	3.6	14
30	Efficient bifunctional materials based on pyrene- and triphenylamine-functionalized dendrimers for electroluminescent devices. RSC Advances, 2015, 5, 73481-73489.	3.6	25
31	Zinc–Porphyrin Dyes with Different <i>meso</i> \$\frac{1}{2}\text{\$\alpha}\$\text{\$\alpha}\$ Substituents for Dyeâ€\$\text{\$\alpha}\$ensitized Solar Cells: Experimental and Theoretical Studies. Chemistry - an Asian Journal, 2015, 10, 882-893.	3.3	20
32	Synthesis and characterization of carbazole dendronized coumarin derivatives as solution-processed non-doped emitters and hole-transporters for electroluminescent devices. New Journal of Chemistry, 2014, 38, 3282.	2.8	30
33	Carbazole dendrimers containing oligoarylfluorene cores as solution-processed hole-transporting non-doped emitters for efficient pure red, green, blue and white organic light-emitting diodes. Polymer Chemistry, 2014, 5, 3982.	3.9	21
34	Bifunctional oligofluorene-cored carbazole dendrimers as solution-processed blue emitters and hole transporters for electroluminescent devices. Journal of Materials Chemistry C, 2014, 2, 5540.	5.5	20
35	Carbazole-Dendrimer-Based Donorâ^'Ï€â€"Acceptor Type Organic Dyes for Dye-Sensitized Solar Cells: Effect of the Size of the Carbazole Dendritic Donor. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 8212-8222.	8.0	60
36	An organic dye using N-dodecyl-3-(3,6-di-tert-butylcarbazol-N-yl)carbazol-6-yl as a donor moiety for efficient dye-sensitized solar cells. Tetrahedron Letters, 2013, 54, 4903-4907.	1.4	14

#	Article	IF	Citations
37	Synthesis and Characterization of D–D–π–Aâ€Type Organic Dyes Bearing Carbazole–Carbazole as a Donor Moiety (D–D) for Efficient Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 5051-5063.	2.4	55
38	Synthesis and Characterization of Carbazole Dendrimers as Solutionâ€Processed High ⟨i>T⟨ i>⟨sub>g⟨ sub> Amorphous Holeâ€Transporting Materials for Electroluminescent Devices. European Journal of Organic Chemistry, 2013, 2013, 6619-6628.	2.4	34
39	An efficient solution processed non-doped red emitter based on carbazole–triphenylamine end-capped di(thiophen-2-yl)benzothiadiazole for pure red organic light-emitting diodes. Chemical Communications, 2013, 49, 3401.	4.1	36
40	Synthesis and Characterization of 2Dâ€Dâ€Ï€â€Aâ€Type Organic Dyes Bearing Bis(3,6â€diâ€ <i>tert</i> à€butylcarbazolâ€9â€ylphenyl)aniline as Donor Moiety for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 2608-2620.	2.4	40
41	Bis(carbazol-9-ylphenyl)aniline End-Capped Oligoarylenes as Solution-Processed Nondoped Emitters for Full-Emission Color Tuning Organic Light-Emitting Diodes. Journal of Organic Chemistry, 2013, 78, 6702-6713.	3.2	38
42	Novel Bis[5-(fluoren-2-yl)thiophen-2-yl]benzothiadiazole End-Capped with Carbazole Dendrons as Highly Efficient Solution-Processed Nondoped Red Emitters for Organic Light-Emitting Diodes. ACS Applied Materials & Diodes. AC	8.0	72
43	Blue light-emitting and hole-transporting materials based on 9,9-bis(4-diphenylaminophenyl)fluorenes for efficient electroluminescent devices. Journal of Materials Chemistry, 2012, 22, 6869.	6.7	74
44	Synthesis and properties of oligofluorene-thiophenes as emissive materials for organic electroluminescent devices: color-tuning from deep blue to orange. Tetrahedron, 2012, 68, 8416-8423.	1.9	15
45	D–Dâ°Ï€â€"A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation. Journal of Physical Chemistry C, 2012, 116, 25653-25663.	3.1	153
46	Carbazole dendronised triphenylamines as solution processed high Tg amorphous hole-transporting materials for organic electroluminescent devices. Chemical Communications, 2012, 48, 3382.	4.1	94
47	Synthesis, Properties and Applications of Biphenyl Functionalized 9,9â€Bis(4â€diphenylaminophenyl)fluorenes as Bifunctional Materials for Organic Electroluminescent Devices. European Journal of Organic Chemistry, 2012, 2012, 5263-5274.	2.4	34
48	Synthesis and characterization of high Tg carbazole-based amorphous hole-transporting materials for organic light-emitting devices. Tetrahedron Letters, 2011, 52, 4749-4752.	1.4	41
49	Bifunctional anthracene derivatives as non-doped blue emitters and hole-transporters for electroluminescent devices. Chemical Communications, 2011, 47, 7122.	4.1	55
50	Characterization of acidity in [B], [Al], and [Ga] isomorphously substituted ZSMâ€5: Embedded DFT/UFF approach. International Journal of Quantum Chemistry, 2011, 111, 2275-2282.	2.0	21
51	Synthesis of electrochemically and thermally stable amorphous hole-transporting carbazole dendronized fluorene. Synthetic Metals, 2007, 157, 17-22.	3.9	66
52	Synthesis, optical, electrochemical, and thermal properties of α,α′-bis(9,9-bis-n-hexylfluorenyl)-substituted oligothiophenes. Tetrahedron Letters, 2007, 48, 3661-3665.	1.4	24
53	Theoretical Study of Modes of Adsorption of Water Dimer on H-ZSM-5 and H-Faujasite Zeolites. Journal of Physical Chemistry B, 2005, 109, 13342-13351.	2.6	43
54	15-P-10-A theoretical study of adsorption of carbon monoxide on Ag-ZSM-5 zeolite. Studies in Surface Science and Catalysis, 2001, , 257.	1.5	1

S Jungsuttiwong

#	Article	lF	CITATIONS
55	Adsorption of carbon monoxide on H-FAU and Li-FAU zeolites: an embedded cluster approach. Journal of Molecular Structure, 2000, 525, 153-162.	3.6	37
56	Physicochemical investigation of the enhanced removal of methylene blue from aqueous solution using polydopamine/silver nanoparticles. Journal of the Textile Institute, 0, , 1-12.	1.9	0