Clemens Grassberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4514335/publications.pdf

Version: 2024-02-01

49 papers

1,541 citations

361045 20 h-index 37 g-index

52 all docs 52 docs citations 52 times ranked 1674 citing authors

#	Article	IF	CITATIONS
1	Mathematical Modeling to Simulate the Effect of Adding Radiation Therapy to Immunotherapy and Application to Hepatocellular Carcinoma. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1055-1062.	0.4	19
2	A dynamic blood flow model to compute absorbed dose to circulating blood and lymphocytes in liver external beam radiotherapy. Physics in Medicine and Biology, 2022, 67, 045010.	1.6	13
3	Lymphocyte dynamics during and after chemo-radiation correlate to dose and outcome in stage III NSCLC patients undergoing maintenance immunotherapy. Radiotherapy and Oncology, 2022, 168, 1-7.	0.3	25
4	Dosimetric Modeling of Lymphopenia in Patients With Metastatic Cancer Receiving Palliative Radiation and PD-1 Immune Checkpoint Inhibitors. Advances in Radiation Oncology, 2022, 7, 100880.	0.6	3
5	Predictive Modeling of Survival and Toxicity in Patients With Hepatocellular Carcinoma After Radiotherapy. JCO Clinical Cancer Informatics, 2022, 6, e2100169.	1.0	O
6	A mesh-based model of liver vasculature: implications for improved radiation dosimetry to liver parenchyma for radiopharmaceuticals. EJNMMI Physics, 2022, 9, 28.	1.3	6
7	Regulatory Programs of B-cell Activation and Germinal Center Reaction Allow B-ALL Escape from CD19 CAR T-cell Therapy. Cancer Immunology Research, 2022, 10, 1055-1068.	1.6	3
8	Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons. Neuro-Oncology, 2021, 23, 284-294.	0.6	78
9	A Multi-institutional Comparative Analysis of Proton and Photon Therapy-Induced Hematologic Toxicity in Patients With Medulloblastoma. International Journal of Radiation Oncology Biology Physics, 2021, 109, 726-735.	0.4	29
10	Comparison of weekly and daily online adaptation for head and neck intensity-modulated proton therapy. Physics in Medicine and Biology, 2021, 66, 055023.	1.6	28
11	Roadmap: proton therapy physics and biology. Physics in Medicine and Biology, 2021, 66, 05RM01.	1.6	67
12	Radiation-Associated Lymphopenia and Outcomes of Patients with Unresectable Hepatocellular Carcinoma Treated with Radiotherapy. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 57-69.	1.8	21
13	Physics of Particle Beam and Hypofractionated Beam Delivery in NSCLC. Seminars in Radiation Oncology, 2021, 31, 162-169.	1.0	6
14	Radiation-Induced Lymphopenia Risks of Photon Versus Proton Therapy for Esophageal Cancer Patients. International Journal of Particle Therapy, 2021, 8, 17-27.	0.9	11
15	Modelling treatment-response rates. Nature Biomedical Engineering, 2021, 5, 295-296.	11.6	O
16	Circulating Lymphocyte Counts Early During Radiation Therapy Are Associated With Recurrence in Pediatric Medulloblastoma. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1044-1052.	0.4	6
17	HEDOS—a computational tool to assess radiation dose to circulating blood cells during external beam radiotherapy based on whole-body blood flow simulations. Physics in Medicine and Biology, 2021, 66, 164001.	1.6	20
18	Single-Cell Profiling Reveals Metabolic Reprogramming as a Resistance Mechanism in <i>BRAF</i> -Mutated Multiple Myeloma. Clinical Cancer Research, 2021, 27, 6432-6444.	3.2	18

#	Article	IF	CITATIONS
19	Pre- and post-treatment image-based dosimetry in ⁹⁰ Y-microsphere radioembolization using the TOPAS Monte Carlo toolkit. Physics in Medicine and Biology, 2021, 66, 244002.	1.6	4
20	A tumor-immune interaction model for hepatocellular carcinoma based on measured lymphocyte counts in patients undergoing radiotherapy. Radiotherapy and Oncology, 2020, 151, 73-81.	0.3	26
21	Dosimetric Analysis and Normal-Tissue Complication Probability Modeling of Child-Pugh Score and Albumin-Bilirubin Grade Increase After Hepatic Irradiation. International Journal of Radiation Oncology Biology Physics, 2020, 107, 986-995.	0.4	23
22	Prolongation of radiotherapy duration is associated with inferior overall survival in patients with pediatric medulloblastoma and central nervous system primitive neuroectodermal tumors. Pediatric Blood and Cancer, 2020, 67, e28558.	0.8	7
23	Modeling Resistance and Recurrence Patterns of Combined Targeted–Chemoradiotherapy Predicts Benefit of Shorter Induction Period. Cancer Research, 2020, 80, 5121-5133.	0.4	7
24	Optimizing Radiation Therapy to Boost Systemic Immune Responses in Breast Cancer: A Critical Review for Breast Radiation Oncologists. International Journal of Radiation Oncology Biology Physics, 2020, 108, 227-241.	0.4	24
25	4D blood flow model for dose calculation to circulating blood and lymphocytes. Physics in Medicine and Biology, 2020, 65, 055008.	1.6	25
26	Three discipline collaborative radiation therapy (3DCRT) special debate: The single most important factor in determining the future of SBRT is immune response. Journal of Applied Clinical Medical Physics, 2019, 20, 6-12.	0.8	1
27	Assessing the interactions between radiotherapy and antitumour immunity. Nature Reviews Clinical Oncology, 2019, 16, 729-745.	12.5	183
28	Patient-Specific Tumor Growth Trajectories Determine Persistent and Resistant Cancer Cell Populations during Treatment with Targeted Therapies. Cancer Research, 2019, 79, 3776-3788.	0.4	32
29	Differential inflammatory response dynamics in normal lung following stereotactic body radiation therapy with protons versus photons. Radiotherapy and Oncology, 2019, 136, 169-175.	0.3	18
30	Protons versus Photons for Unresectable Hepatocellular Carcinoma: Liver Decompensation and Overall Survival. International Journal of Radiation Oncology Biology Physics, 2019, 105, 64-72.	0.4	99
31	Differential Association Between Circulating Lymphocyte Populations With Outcome After Radiation Therapy in Subtypes of Liver Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, 1222-1225.	0.4	29
32	Density overwrites of internal tumor volumes in intensity modulated proton therapy plans for mobile lung tumors. Physics in Medicine and Biology, 2018, 63, 035023.	1.6	14
33	Considerations when treating lung cancer with passive scatter or active scanning proton therapy. Translational Lung Cancer Research, 2018, 7, 210-215.	1.3	13
34	Pretreatment plasma HGF as potential biomarker for susceptibility to radiation-induced liver dysfunction after radiotherapy. Npj Precision Oncology, 2018, 2, 22.	2.3	20
35	Asymptomatic Late-phase Radiographic Changes Among Chest-Wall Patients Are Associated With a Proton RBE Exceeding 1.1. International Journal of Radiation Oncology Biology Physics, 2018, 101, 809-819.	0.4	84
36	Biomathematical Optimization of Radiation Therapy in the Era of Targeted Agents. International Journal of Radiation Oncology Biology Physics, 2017, 97, 13-17.	0.4	9

#	Article	IF	CITATIONS
37	Prediction of Treatment Response for Combined Chemo- and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-Mathematical Model. Scientific Reports, 2017, 7, 13542.	1.6	56
38	Varying relative biological effectiveness in proton therapy: knowledge gaps versus clinical significance. Acta Oncol \tilde{A}^3 gica, 2017, 56, 761-762.	0.8	15
39	Predicting Organ-Specific Risk Interactions between Radiation and Chemotherapy in Secondary Cancer Survivors. Cancers, 2017, 9, 119.	1.7	5
40	Fractionated Lung IMPT Treatments. Technology in Cancer Research and Treatment, 2016, 15, 689-696.	0.8	12
41	Multi-modality management of craniopharyngioma: a review of various treatments and their outcomes. Neuro-Oncology Practice, 2016, 3, 173-187.	1.0	18
42	Automated Monte Carlo Simulation of Proton Therapy Treatment Plans. Technology in Cancer Research and Treatment, 2016, 15, NP35-NP46.	0.8	23
43	Motion mitigation for lung cancer patients treated with active scanning proton therapy. Medical Physics, 2015, 42, 2462-2469.	1.6	74
44	Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy. International Journal of Radiation Oncology Biology Physics, 2015, 92, 1157-1164.	0.4	75
45	Computing proton dose to irregularly moving targets. Physics in Medicine and Biology, 2014, 59, 4261-4273.	1.6	7
46	Challenges of radiotherapy: Report on the 4D treatment planning workshop 2013. Physica Medica, 2014, 30, 809-815.	0.4	32
47	Quantification of Proton Dose Calculation Accuracy in the Lung. International Journal of Radiation Oncology Biology Physics, 2014, 89, 424-430.	0.4	70
48	Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 86, 380-386.	0.4	168
49	Fourâ€dimensional Monte Carlo simulations demonstrating how the extent of intensityâ€modulation impacts motion effects in proton therapy lung treatments. Medical Physics, 2013, 40, 121713.	1.6	14