
Mary Ann Jabra-Rizk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4514310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymicrobial Interactions: Impact on Pathogenesis and Human Disease. Clinical Microbiology Reviews, 2012, 25, 193-213.	5.7	582
2	Cross-kingdom interactions: <i>Candida albicans</i> and bacteria. FEMS Microbiology Letters, 2009, 299, 1-8.	0.7	362
3	Antimicrobial Peptides: Primeval Molecules or Future Drugs?. PLoS Pathogens, 2010, 6, e1001067.	2.1	344
4	Pathogenesis of <i>Candida albicans</i> biofilm. Pathogens and Disease, 2016, 74, ftw018.	0.8	323
5	Microbial interactions and differential protein expression in <i>Staphylococcus aureus–Candida albicans</i> dual-species biofilms. FEMS Immunology and Medical Microbiology, 2010, 59, 493-503.	2.7	246
6	Fungal Biofilms and Drug Resistance. Emerging Infectious Diseases, 2004, 10, 14-19.	2.0	241
7	Streptococcus mutans, Candida albicans, and the Human Mouth: A Sticky Situation. PLoS Pathogens, 2013, 9, e1003616.	2.1	236
8	Farnesol-Induced Apoptosis in <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 2392-2401.	1.4	210
9	Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology (United Kingdom), 2015, 161, 168-181.	0.7	209
10	Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix. MBio, 2016, 7, .	1.8	202
11	Oral Candidiasis: A Disease of Opportunity. Journal of Fungi (Basel, Switzerland), 2020, 6, 15.	1.5	200
12	Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology (United Kingdom), 2012, 158, 2975-2986.	0.7	188
13	Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework. Infection and Immunity, 2016, 84, 2724-2739.	1.0	144
14	A Novel Immune Evasion Strategy of Candida albicans: Proteolytic Cleavage of a Salivary Antimicrobial Peptide. PLoS ONE, 2009, 4, e5039.	1.1	115
15	Effect of farnesol onCandida dubliniensisbiofilm formation and fluconazole resistance. FEMS Yeast Research, 2006, 6, 1063-1073.	1.1	105
16	Identification of <i>Candida dubliniensis</i> in a Prospective Study of Patients in the United States. Journal of Clinical Microbiology, 1999, 37, 321-326.	1.8	101
17	"Persistersâ€ŧ Survival at the Cellular Level. PLoS Pathogens, 2011, 7, e1002121.	2.1	98
18	In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms, Journal of Antimicrobial Chemotherapy, 2015, 70, 470-478	1.3	96

MARY ANN JABRA-RIZK

#	Article	IF	CITATIONS
19	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	1.4	81
20	The oral microbiome: A Lesson in coexistence. PLoS Pathogens, 2018, 14, e1006719.	2.1	80
21	Community-Associated Methicillin-Resistant Staphylococcus aureus: An Enemy amidst Us. PLoS Pathogens, 2016, 12, e1005837.	2.1	80
22	Coaggregation of <i>Candida dubliniensis</i> with <i>Fusobacterium nucleatum</i> . Journal of Clinical Microbiology, 1999, 37, 1464-1468.	1.8	74
23	Clinical Implications of Oral Candidiasis: Host Tissue Damage and Disseminated Bacterial Disease. Infection and Immunity, 2015, 83, 604-613.	1.0	73
24	Modulation of Staphylococcus aureus Response to Antimicrobials by the Candida albicans Quorum Sensing Molecule Farnesol. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	73
25	Farnesol, a Fungal Quorum-Sensing Molecule Triggers Apoptosis in Human Oral Squamous Carcinoma Cells. Neoplasia, 2008, 10, 954-963.	2.3	70
26	Candidalysin Crucially Contributes to Nlrp3 Inflammasome Activation by Candida albicans Hyphae. MBio, 2019, 10, .	1.8	70
27	Periodontal Diseases: Bug Induced, Host Promoted. PLoS Pathogens, 2015, 11, e1004952.	2.1	67
28	The power of saliva: Antimicrobial and beyond. PLoS Pathogens, 2019, 15, e1008058.	2.1	65
29	Farnesol-Induced Apoptosis in Candida albicans Is Mediated by Cdr1-p Extrusion and Depletion of Intracellular Clutathione. PLoS ONE, 2011, 6, e28830.	1.1	63
30	Oral Candida dubliniensis as a clinically important species in HIV-seropositive patients in the United States. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 1999, 88, 573-580.	1.6	59
31	Prevalence of Candida dubliniensis Fungemia at a Large Teaching Hospital. Clinical Infectious Diseases, 2005, 41, 1064-1067.	2.9	51
32	The Role of Candida albicans Secreted Polysaccharides in Augmenting Streptococcus mutans Adherence and Mixed Biofilm Formation: In vitro and in vivo Studies. Frontiers in Microbiology, 2020, 11, 307.	1.5	49
33	Impaired Histatin-5 Levels and Salivary Antimicrobial Activity against C.albicans in HIV Infected Individuals. Journal of AIDS & Clinical Research, 2013, 04, .	0.5	47
34	Evaluation of a Reformulated CHROMagar Candida. Journal of Clinical Microbiology, 2001, 39, 2015-2016.	1.8	45
35	In vitro studies of the efficacy of antimicrobials against fungi. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2001, 91, 663-670.	1.6	39
36	Development and <i>In Vivo</i> Evaluation of a Novel Histatin-5 Bioadhesive Hydrogel Formulation against Oral Candidiasis. Antimicrobial Agents and Chemotherapy, 2016, 60, 881-889.	1.4	39

MARY ANN JABRA-RIZK

#	Article	IF	CITATIONS
37	Therapeutic implications of <i>C. albicans-S. aureus</i> mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence, 2021, 12, 835-851.	1.8	37
38	<i>Candida albicans</i> quorum-sensing molecule farnesol modulates staphyloxanthin production and activates the thiol-based oxidative-stress response in <i>Staphylococcus aureus</i> . Virulence, 2019, 10, 625-642.	1.8	35
39	Enhanced Interleukin-1β, Interleukin-6 and Tumor Necrosis Factor-α Production by LPS Stimulated Human Monocytes Isolated from HIV + Patients. Immunopharmacology and Immunotoxicology, 2000, 22, 401-421.	1.1	32
40	Microbial cell surface proteins and secreted metabolites involved in multispecies biofilms. Pathogens and Disease, 2014, 70, 219-230.	0.8	32
41	Pathogenesis of Polymicrobial Biofilms. The Open Mycology Journal, 2011, 5, 39-43.	0.8	27
42	Adhesion of Staphylococcus aureus to Candida albicans During Co-Infection Promotes Bacterial Dissemination Through the Host Immune Response. Frontiers in Cellular and Infection Microbiology, 2020, 10, 624839.	1.8	25
43	Engineering improved variants of the antifungal peptide histatin 5 with reduced susceptibility to <i>Candida albicans</i> secreted aspartic proteases and enhanced antimicrobial potency. FEBS Journal, 2018, 285, 146-159.	2.2	24
44	Protection of the oral mucosa by salivary histatin-5 against Candida albicans in an ex vivo murine model of oral infection. FEMS Yeast Research, 2010, 10, no-no.	1.1	23
45	Convalescent serum therapy for COVID-19:ÂA 19th century remedy for a 21st century disease. PLoS Pathogens, 2020, 16, e1008735.	2.1	23
46	Adherence of Streptococcus mutans on lithium disilicate porcelain specimens. Journal of Prosthetic Dentistry, 2015, 114, 696-701.	1.1	22
47	The Great Escape: Pathogen Versus Host. PLoS Pathogens, 2015, 11, e1004661.	2.1	21
48	Evaluation of the Antifungal and Wound-Healing Properties of a Novel Peptide-Based Bioadhesive Hydrogel Formulation. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	19
49	Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections. MSphere, 2020, 5, .	1.3	19
50	Draft Genome Sequence of the Methicillin-Resistant Staphylococcus aureus Isolate MRSA-M2. Genome Announcements, 2013, 1, .	0.8	18
51	<i>Candida auris:</i> a fungus with identity crisis. Pathogens and Disease, 2020, 78, .	0.8	18
52	Digital Design of a Universal Rat Intraoral Device for Therapeutic Evaluation of a Topical Formulation against <i>Candida</i> -Associated Denture Stomatitis. Infection and Immunity, 2019, 87, .	1.0	15
53	Prevalence of Oral Candida Species in a North American Pediatric Population. Journal of Clinical Pediatric Dentistry, 2007, 31, 260-263.	0.5	14
54	Farnesol and <i>Candida albicans</i> : Quorum Sensing or Not Quorum Sensing?. Israel Journal of Chemistry, 2016, 56, 295-301.	1.0	9

Mary Ann Jabra-Rizk

#	Article	IF	CITATIONS
55	Fungal–Bacterial Interactions: In Health and Disease. , 2017, , 115-143.		5
56	Salivary biomarker profiles in Eâ€cigarette users and conventional smokers: A crossâ€sectional study. Oral Diseases, 2021, 27, 277-279.	1.5	5
57	Long-Term Post-COVID-19 Associated Oral Inflammatory Sequelae. Frontiers in Cellular and Infection Microbiology, 2022, 12, 831744.	1.8	5
58	Topical therapy for refractory rhinosinusitis caused by methicillin-resistant Staphylococcus aureus : First report in a prospective series. Auris Nasus Larynx, 2018, 45, 994-999.	0.5	4
59	PROLONGED FACIAL MASK WEAR IS A CONCERN FOR THE DEVELOPMENT OF DYSBIOTIC MICROBIOME. Respiratory Medicine and Research, 2021, 81, 100877.	0.4	2
60	Candida albicans: Love-Hate Relationship with Its Human Host. Microbe Magazine, 2015, 10, 413-418.	0.4	1
61	The Global Emergence of the Fungal Pathogen Candida auris. Clinical Infectious Diseases, 2021, 72, 178-179.	2.9	1
62	Application of proper orthogonal decomposition for evaluation of coherent structures and energy contents in microbial biofilms. Journal of Microbiological Methods, 2022, 194, 106420.	0.7	1
63	Editorial overview of Pearls Microbiome Series: E pluribus unum. PLoS Pathogens, 2021, 17, e1009912.	2.1	0
64	Preexisting Oral Disease as a Risk Factor in Oral Complications during PBSCT in Multiple Myeloma Patients. Blood, 2008, 112, 5125-5125.	0.6	0