Huijuan Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4514042/publications.pdf

Version: 2024-02-01

74 papers

4,301 citations

93792 39 h-index 64 g-index

77 all docs

77
docs citations

times ranked

77

4028 citing authors

#	Article	IF	CITATIONS
1	Life cycle cost–benefit efficiency of food waste treatment technologies in China. Environment, Development and Sustainability, 2023, 25, 4935-4956.	2.7	4
2	Low carbon potential of urban symbiosis under different municipal solid waste sorting modes based on a system dynamic method. Resources, Conservation and Recycling, 2022, 179, 106108.	5.3	18
3	Uncovering the overcapacity feature of China's industry and the environmental & Delth co-benefits from de-capacity. Journal of Environmental Management, 2022, 308, 114645.	3.8	14
4	Machine learning based prediction for China's municipal solid waste under the shared socioeconomic pathways. Journal of Environmental Management, 2022, 312, 114918.	3.8	33
5	Uncovering the differences of household carbon footprints and driving forces between China and Japan. Energy Policy, 2022, 165, 112990.	4.2	13
6	Life cycle environmental benefit and waste-to-energy potential of municipal solid waste management scenarios in Indonesia. Journal of Material Cycles and Waste Management, 2022, 24, 1859-1877.	1.6	5
7	Carbon neutrality prediction of municipal solid waste treatment sector under the shared socioeconomic pathways. Resources, Conservation and Recycling, 2022, 186, 106528.	5.3	34
8	Emergy-based indicators of the environmental impacts and driving forces of non-point source pollution from crop production in China. Ecological Indicators, 2021, 121, 107023.	2.6	18
9	New insights from grey water footprint assessment: An industrial park level. Journal of Cleaner Production, 2021, 285, 124915.	4.6	16
10	Greenhouse gas emission mitigation potential from municipal solid waste treatment: A combined SD-LMDI model. Waste Management, 2021, 120, 725-733.	3.7	30
11	Environmental damage cost assessment from municipal solid waste treatment based on LIME3 model. Waste Management, 2021, 125, 249-256.	3.7	11
12	Trends and driving forces of low-carbon energy technology innovation in China's industrial sectors from 1998 to 2017: from a regional perspective. Frontiers in Energy, 2021, 15, 473-486.	1.2	22
13	Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city. Technological Forecasting and Social Change, 2020, 151, 119853.	6.2	26
14	Optimization of recyclable MSW recycling network: A Chinese case of Shanghai. Waste Management, 2020, 102, 763-772.	3.7	33
15	How to achieve China's CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation. Renewable and Sustainable Energy Reviews, 2020, 127, 109892.	8.2	73
16	An overview of the municipal solid waste management modes and innovations in Shanghai, China. Environmental Science and Pollution Research, 2020, 27, 29943-29953.	2.7	75
17	Uncover Cost-Benefit Disparity of Municipal Solid Waste Incineration in Chinese Provinces. Sustainability, 2020, 12, 697.	1.6	9
18	Grey water footprint evaluation and driving force analysis of eight economic regions in China. Environmental Science and Pollution Research, 2020, 27, 20380-20391.	2.7	19

#	Article	IF	CITATIONS
19	Policy impacts on Municipal Solid Waste management in Shanghai: A system dynamics model analysis. Journal of Cleaner Production, 2020, 262, 121366.	4.6	107
20	Contribution to a low-carbon society from improving exergy of waste-to-energy system by upgrading utilization of waste. Resources, Conservation and Recycling, 2019, 149, 586-594.	5.3	21
21	Virtual water flow feature of water-rich province and the enlightenments: Case of Yunnan in China. Journal of Cleaner Production, 2019, 235, 328-336.	4.6	19
22	A bibliometric analysis on waste electrical and electronic equipment research. Environmental Science and Pollution Research, 2019, 26, 21098-21108.	2.7	45
23	China's provincial grey water footprint characteristic and driving forces. Science of the Total Environment, 2019, 677, 427-435.	3.9	80
24	A benchmark city-level carbon dioxide emission inventory for China in 2005. Applied Energy, 2019, 233-234, 659-673.	5.1	36
25	Emergy-based ecological footprint analysis for a mega-city: The dynamic changes of Shanghai. Journal of Cleaner Production, 2019, 210, 552-562.	4.6	61
26	Sustainability evaluation of secondary lead production from spent lead acid batteries recycling. Resources, Conservation and Recycling, 2019, 140, 13-22.	5. 3	58
27	Toward sustainable crop production in China: An emergy-based evaluation. Journal of Cleaner Production, 2019, 206, 11-26.	4.6	53
28	An emergy accounting based regional sustainability evaluation: A case of Qinghai in China. Ecological Indicators, 2018, 88, 152-160.	2.6	38
29	Life cycle assessment of gold production in China. Journal of Cleaner Production, 2018, 179, 143-150.	4.6	70
30	Evaluating Environmental Performance of Industrial Park Development: The Case of Shenyang. Journal of Industrial Ecology, 2018, 22, 1402-1412.	2.8	18
31	Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China. Water Research, 2018, 141, 208-216.	5.3	55
32	An overview of China's recyclable waste recycling and recommendations for integrated solutions. Resources, Conservation and Recycling, 2018, 134, 112-120.	5.3	123
33	An emergy based sustainability evaluation on a combined landfill and LFG power generation system. Energy, 2018, 143, 310-322.	4.5	23
34	Impacts of SO2 taxations and renewable energy development on CO2, NOx and SO2 emissions in Jing-Jin-Ji region. Journal of Cleaner Production, 2018, 171, 1386-1395.	4.6	53
35	Efficient distribution of carbon emissions reduction targets at the city level: A case of Yangtze River Delta region. Journal of Cleaner Production, 2018, 172, 1711-1721.	4.6	24
36	An Emergy and Decomposition Assessment of China's Crop Production: Sustainability and Driving Forces. Sustainability, 2018, 10, 3938.	1.6	4

#	Article	IF	CITATIONS
37	Technical and economic assessment of RES penetration by modelling China's existing energy system. Energy, 2018, 165, 900-910.	4.5	28
38	Uncovering energy saving and carbon reduction potential from recycling wastes: A case of Shanghai in China. Journal of Cleaner Production, 2018, 205, 27-35.	4.6	46
39	Improving waste to energy rate by promoting an integrated municipal solid-waste management system. Resources, Conservation and Recycling, 2018, 136, 289-296.	5. 3	55
40	Social network analysis on industrial symbiosis: A case of Gujiao eco-industrial park. Journal of Cleaner Production, 2018, 193, 414-423.	4.6	97
41	Exploring impact of carbon tax on China's CO 2 reductions and provincial disparities. Renewable and Sustainable Energy Reviews, 2017, 77, 596-603.	8.2	135
42	Examining industrial structure changes and corresponding carbon emission reduction effect by combining input-output analysis and social network analysis: A comparison study of China and Japan. Journal of Cleaner Production, 2017, 162, 61-70.	4.6	125
43	Effect of environmental regulations on China's graphite export. Journal of Cleaner Production, 2017, 161, 327-334.	4.6	26
44	Eco-industrial development around the globe: recent progress and continuing challenges. Resources, Conservation and Recycling, 2017, 127, A1-A2.	5. 3	5
45	A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy methods—Case of Kawasaki, Japan. Ecological Indicators, 2017, 73, 513-524.	2.6	63
46	Kawasaki, Japan. , 2017, , 149-153.		0
46	Kawasaki, Japan. , 2017, , 149-153. Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology). Energy, 2016, 107, 818-830.	4.5	0 22
	Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT	4.5	
47	Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology). Energy, 2016, 107, 818-830. Economic Impacts from PM _{2.5} Pollution-Related Health Effects in China: A		22
47	Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology). Energy, 2016, 107, 818-830. Economic Impacts from PM _{2.5} Pollution-Related Health Effects in China: A Provincial-Level Analysis. Environmental Science & Description of the American Science & Description of the America	4.6	301
47 48 49	Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology). Energy, 2016, 107, 818-830. Economic Impacts from PM _{2.5} Pollution-Related Health Effects in China: A Provincial-Level Analysis. Environmental Science & Description of Science & Descriptio	4.6 4.6	301 60
47 48 49 50	Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology). Energy, 2016, 107, 818-830. Economic Impacts from PM _{2.5} Pollution-Related Health Effects in China: A Provincial-Level Analysis. Environmental Science & Description of Science & Descriptio	4.6 4.6 5.1	223016050
47 48 49 50	Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology). Energy, 2016, 107, 818-830. Economic Impacts from PM _{2.5} Pollution-Related Health Effects in China: A Provincial-Level Analysis. Environmental Science & Environ	4.6 4.6 5.1 8.2	 22 301 60 50 19

#	Article	IF	CITATIONS
55	Regional household carbon footprint in China: a case of Liaoning province. Journal of Cleaner Production, 2016, 114, 401-411.	4.6	61
56	Emergy-based assessment on the brownfield redevelopment of one old industrial area: a case of Tiexi in China. Journal of Cleaner Production, 2016, 114, 150-159.	4.6	27
57	Comparative analysis of recycling industry development in Japan following the Eco-Town program for eco-industrial development. Journal of Cleaner Production, 2016, 114, 95-102.	4.6	23
58	Changes of CO 2 emissions embodied in China–Japan trade: drivers and implications. Journal of Cleaner Production, 2016, 112, 4151-4158.	4.6	128
59	Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach. Energy Policy, 2015, 78, 148-157.	4.2	68
60	Cost-effectiveness analysis of China's Sulfur dioxide control strategy at the regional level: regional disparity, inequity and future challenges. Journal of Cleaner Production, 2015, 90, 345-359.	4.6	60
61	Pursuing air pollutant co-benefits of CO 2 mitigation in China: A provincial leveled analysis. Applied Energy, 2015, 144, 165-174.	5.1	199
62	Insights into the Regional Greenhouse Gas (GHG) Emission of Industrial Processes: A Case Study of Shenyang, China. Sustainability, 2014, 6, 3669-3685.	1.6	19
63	Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environmental Science and Pollution Research, 2014, 21, 13572-13587.	2.7	107
64	Spatial-temporal patterns and driving factors for industrial wastewater emission in China. Journal of Cleaner Production, 2014, 76, 116-124.	4.6	101
65	Emergy-based comparative analysis on industrial clusters: economic and technological development zone of Shenyang area, China. Environmental Science and Pollution Research, 2014, 21, 10243-10253.	2.7	32
66	Uncovering regional disparity of China's water footprint and inter-provincial virtual water flows. Science of the Total Environment, 2014, 500-501, 120-130.	3.9	100
67	Three accounts for regional carbon emissions from both fossil energy consumption and industrial process. Energy, 2014, 67, 276-283.	4.5	23
68	Urban ecological footprint analysis: a comparative study between Shenyang in China and Kawasaki in Japan. Journal of Cleaner Production, 2014, 75, 130-142.	4.6	80
69	Achieving carbon emission reduction through industrial & Carbon symbiosis: A case of Kawasaki. Energy, 2014, 64, 277-286.	4.5	102
70	Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach. Energy Policy, 2013, 57, 298-307.	4.2	130
71	Environmental and economic gains of industrial symbiosis for Chinese iron/steel industry: Kawasaki's experience and practice in Liuzhou and Jinan. Journal of Cleaner Production, 2013, 59, 226-238.	4.6	145
72	Regional water footprint evaluation in China: A case of Liaoning. Science of the Total Environment, 2013, 442, 215-224.	3.9	137

Huijuan Dong

#	Article	IF	CITATIONS
73	An Overview of Chinese Green Building Standards. Sustainable Development, 2012, 20, 211-221.	6.9	71
74	Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China. Energy Policy, 2011, 39, 5999-6010.	4.2	105