Kyu-Ho Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4514022/publications.pdf Version: 2024-02-01

KVU-HOLEE

#	Article	IF	CITATIONS
1	Role of Flagellum and Motility in Pathogenesis of Vibrio vulnificus. Infection and Immunity, 2004, 72, 4905-4910.	2.2	128
2	ldentification of OmpU of Vibrio vulnificus as a Fibronectin-Binding Protein and Its Role in Bacterial Pathogenesis. Infection and Immunity, 2006, 74, 5586-5594.	2.2	103
3	Cyclo(Phe-Pro) Modulates the Expression of ompU in Vibrio spp. Journal of Bacteriology, 2006, 188, 2214-2221.	2.2	100
4	SmcR and Cyclic AMP Receptor Protein Coactivate Vibrio vulnificus vvpE Encoding Elastase through the RpoS-dependent Promoter in a Synergistic Manner. Journal of Biological Chemistry, 2003, 278, 45072-45081.	3.4	87
5	Role of capsular polysaccharide (<scp>CPS</scp>) in biofilm formation and regulation of <scp>CPS</scp> production by quorumâ€sensing in <i><scp>V</scp>ibrio vulnificus</i> . Molecular Microbiology, 2013, 90, 841-857.	2.5	68
6	Differential Expression of Vibrio vulnificus Elastase Gene in a Growth Phase-dependent Manner by Two Different Types of Promoters. Journal of Biological Chemistry, 2001, 276, 13875-13880.	3.4	64
7	Role of NtrCâ€regulated exopolysaccharides in the biofilm formation and pathogenic interaction of <i>Vibrio vulnificus</i> . Molecular Microbiology, 2009, 74, 436-453.	2.5	63
8	A novel continuous toxicity test system using a luminously modified freshwater bacterium. Biosensors and Bioelectronics, 2004, 20, 338-344.	10.1	61
9	Complete Genome Sequence of Vibrio vulnificus MO6-24/O. Journal of Bacteriology, 2011, 193, 2062-2063.	2.2	59
10	Isolation and Characterization of rpoS from a Pathogenic Bacterium, Vibrio vulnificus: Role of σS in Survival of Exponential-Phase Cells under Oxidative Stress. Journal of Bacteriology, 2004, 186, 3304-3312.	2.2	52
11	Positive Regulation of <i>fur</i> Gene Expression via Direct Interaction of Fur in a Pathogenic Bacterium, <i>Vibrio vulnificus</i> . Journal of Bacteriology, 2007, 189, 2629-2636.	2.2	48
12	Role of NtrC in biofilm formation via controlling expression of the gene encoding an ADP-glycero-manno-heptose-6-epimerase in the pathogenic bacterium,Vibrio vulnificus. Molecular Microbiology, 2007, 63, 559-574.	2.5	48
13	Functional Characterization of the IlpA Protein of <i>Vibrio vulnificus</i> as an Adhesin and Its Role in Bacterial Pathogenesis. Infection and Immunity, 2010, 78, 2408-2417.	2.2	44
14	The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator, SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus. Infection and Immunity, 2013, 81, 2888-2898.	2.2	44
15	Transcriptional Regulatory Cascade for Elastase Production in Vibrio vulnificus. Journal of Biological Chemistry, 2006, 281, 34775-34784.	3.4	43
16	Regulation of fur Expression by RpoS and Fur in Vibrio vulnificus. Journal of Bacteriology, 2003, 185, 5891-5896.	2.2	35
17	Regulation of haemolysin (<scp>VvhA</scp>) production by ferric uptake regulator (<scp>Fur</scp>) in <i><scp>V</scp>ibrio vulnificus</i> : repression of <i>vvhA</i> transcription by <scp>Fur</scp> and proteolysis of <scp>VvhA</scp> by <scp>Fur</scp> â€repressive exporteases. Molecular Microbiology,	2.5	33
18	Vibrio vulnificus IlpA-induced Cytokine Production Is Mediated by Toll-like Receptor 2. Journal of Biological Chemistry, 2007, 282, 27647-27658.	3.4	29

Kyu-Ho Lee

#	Article	IF	CITATIONS
19	Expression of the <i>cpdA</i> Gene, Encoding a 3′,5′-Cyclic AMP (cAMP) Phosphodiesterase, Is Positively Regulated by the cAMP-cAMP Receptor Protein Complex. Journal of Bacteriology, 2009, 191, 922-930.	2.2	27
20	Role of Flagellin-Homologous Proteins in Biofilm Formation by Pathogenic <i>Vibrio</i> Species. MBio, 2019, 10, .	4.1	24
21	Role of Heat Shock Proteases in Quorum-Sensing-Mediated Regulation of Biofilm Formation by <i>Vibrio</i> Species. MBio, 2018, 9, .	4.1	23
22	Vibrio vulnificus rpoS Expression Is Repressed by Direct Binding of cAMP-cAMP Receptor Protein Complex to Its Two Promoter Regions. Journal of Biological Chemistry, 2008, 283, 30438-30450.	3.4	21
23	FrsA functions as a cofactor-independent decarboxylase to control metabolic flux. Nature Chemical Biology, 2011, 7, 434-436.	8.0	20
24	VvpM, an extracellular metalloprotease of Vibrio vulnificus, induces apoptotic death of human cells. Journal of Microbiology, 2014, 52, 1036-1043.	2.8	19
25	Identification and Characterization of a Novel Serine Protease, VvpS, That Contains Two Functional Domains and Is Essential for Autolysis of Vibrio vulnificus. Journal of Bacteriology, 2011, 193, 3722-3732.	2.2	18
26	Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria. Biofouling, 2016, 32, 711-723.	2.2	18
27	Cyclo-(l -Phe- l -Pro), a Quorum-Sensing Signal of Vibrio vulnificus, Induces Expression of Hydroperoxidase through a ToxR-LeuO-HU-RpoS Signaling Pathway To Confer Resistance against Oxidative Stress. Infection and Immunity, 2018, 86, .	2.2	18
28	Functional Characterization of EpsC, a Component of the Type II Secretion System, in the Pathogenicity of Vibrio vulnificus. Infection and Immunity, 2011, 79, 4068-4080.	2.2	16
29	A Vibrio vulnificus VvpM Induces IL-1β Production Coupled with Necrotic Macrophage Death via Distinct Spatial Targeting by ANXA2. Frontiers in Cellular and Infection Microbiology, 2017, 7, 352.	3.9	16
30	Vibrio vulnificus-induced death of Jurkat T-cells requires activation of p38 mitogen-activated protein kinase by NADPH oxidase-derived reactive oxygen species. Cellular Immunology, 2008, 253, 81-91.	3.0	13
31	Stationaryâ€phase induction of <scp><i>vvpS</i></scp> expression by three transcription factors: repression by <scp>LeuO</scp> and activation by <scp>SmcR</scp> and <scp>CRP</scp> . Molecular Microbiology, 2015, 97, 330-346.	2.5	12
32	Multi-Factor Regulation of the Master Modulator LeuO for the Cyclic-(Phe-Pro) Signaling Pathway in Vibrio vulnificus. Scientific Reports, 2019, 9, 20135.	3.3	11
33	Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein. PLoS ONE, 2014, 9, e97850.	2.5	10
34	Vibrio vulnificus-induced Cell Death of Human Mononuclear Cells Requires ROS-dependent Activation of p38 and ERK 1/2 MAPKs. Immunological Investigations, 2009, 38, 31-48.	2.0	9
35	VvpM Induces Human Cell Death via Multifarious Modes Including Necroptosis and Autophagy. Journal of Microbiology and Biotechnology, 2015, 25, 302-306.	2.1	6
36	Role of AcsR in expression of the acetyl-CoA synthetase gene in Vibrio vulnificus. BMC Microbiology, 2015, 15, 86.	3.3	5

Kyu-Ho Lee

#	Article	IF	CITATIONS
37	Role of DegQ in differential stability of flagellin subunits in Vibrio vulnificus. Npj Biofilms and Microbiomes, 2021, 7, 32.	6.4	5
38	Identification of the Fur-Binding Site in Regulatory Region of the Vulnibactin-Receptor Gene in Vibrio vulnificus. Journal of Microbiology and Biotechnology, 2012, 22, 46-49.	2.1	5
39	Vibrio vulnificus induces the death of a major bacterial species in the mouse gut via cyclo-Phe-Pro. Microbiome, 2021, 9, 161.	11.1	4
40	Repression of VvpM Protease Expression by Quorum Sensing and the cAMP-cAMP Receptor Protein Complex in Vibrio vulnificus. Journal of Bacteriology, 2018, 200, .	2.2	3
41	Transition of Dephospho-DctD to the Transcriptionally Active State via Interaction with Dephospho-IIA ^{Glc} . MBio, 2022, 13, e0383921.	4.1	2
42	Transcription activation of two clusters for exopolysaccharide biosynthesis by phosphorylated DctD in Vibrio vulnificus. Environmental Microbiology, 2021, 23, 5364-5377.	3.8	1