Je-Wook Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/451393/publications.pdf

Version: 2024-02-01

50 papers 6,593 citations

236833 25 h-index 50 g-index

50 all docs

50 docs citations

50 times ranked

8530 citing authors

#	Article	IF	CITATIONS
1	PGC-1α inhibits the NLRP3 inflammasome via preserving mitochondrial viability to protect kidney fibrosis. Cell Death and Disease, 2022, 13, 31.	2.7	23
2			

#	Article	IF	Citations
19	Palmitate and minimally-modified low-density lipoprotein cooperatively promote inflammatory responses in macrophages. PLoS ONE, 2018, 13, e0193649.	1.1	9
20	Prolonged Exposure to Lipopolysaccharide Induces NLRP3-Independent Maturation and Secretion of Interleukin (IL)-1�z� in Macrophages. Journal of Microbiology and Biotechnology, 2018, 28, 115-121.	0.9	6
21	Advanced glycation end products impair NLRP3 inflammasome–mediated innate immune responses in macrophages. Journal of Biological Chemistry, 2017, 292, 20437-20448.	1.6	46
22	NLRP3 Inflammasome Contributes to Lipopolysaccharide-induced Depressive-Like Behaviors via Indoleamine 2,3-dioxygenase Induction. International Journal of Neuropsychopharmacology, 2017, 20, 896-906.	1.0	45
23	Immunomodulatory/anti-inflammatory effect of ZOE-based dental materials. Dental Materials, 2017, 33, e1-e12.	1.6	24
24	Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner. Frontiers in Immunology, 2017, 8, 333.	2.2	18
25	Inflammasome activation by cell volume regulation and inflammation-associated hyponatremia: A vicious cycle. Medical Hypotheses, 2016, 93, 117-121.	0.8	13
26	Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Archives of Pharmacal Research, 2016, 39, 1503-1518.	2.7	148
27	25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nature Communications, 2016, 7, 13129.	5.8	124
28	Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E762-71.	3.3	64
29	Nonâ€transcriptional regulation of NLRP3 inflammasome signaling by ILâ€4. Immunology and Cell Biology, 2015, 93, 591-599.	1.0	35
30	Histone deacetylase 6 negatively regulates NLRP3 inflammasome activation. Biochemical and Biophysical Research Communications, 2015, 467, 973-978.	1.0	50
31	Rotenone-induced Impairment of Mitochondrial Electron Transport Chain Confers a Selective Priming Signal for NLRP3 Inflammasome Activation. Journal of Biological Chemistry, 2015, 290, 27425-27437.	1.6	98
32	Defective mitochondrial fission augments NLRP3 inflammasome activation. Scientific Reports, 2015, 5, 15489.	1.6	125
33	Restoration of ASC expression sensitizes colorectal cancer cells to genotoxic stress-induced caspase-independent cell death. Cancer Letters, 2013, 331, 183-191.	3.2	17
34	The Mitochondrial Antiviral Protein MAVS Associates with NLRP3 and Regulates Its Inflammasome Activity. Journal of Immunology, 2013, 191, 4358-4366.	0.4	210
35	Ribotoxic Stress through p38 Mitogen-activated Protein Kinase Activates in Vitro the Human Pyrin Inflammasome. Journal of Biological Chemistry, 2013, 288, 11378-11383.	1.6	38
36	Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures. Immune Network, 2013, 13, 141.	1.6	18

#	Article	IF	CITATIONS
37	<i>Salmonella</i> Promotes ASC Oligomerization-dependent Caspase-1 Activation. Immune Network, 2012, 12, 284.	1.6	12
38	Pyrin Domain (PYD)-containing Inflammasome in Innate Immunity. Journal of Bacteriology and Virology, 2011, 41, 133.	0.0	16
39	TRADD is critical for resistance to TRAIL-induced cell death through NF-κB activation. FEBS Letters, 2011, 585, 2144-2150.	1.3	29
40	The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunology, 2010, 11, 385-393.	7.0	637
41	CIIA Is a Novel Regulator of Detachment-Induced Cell Death. Cancer Research, 2010, 70, 6352-6358.	0.4	5
42	Anti-inflammatory Compounds Parthenolide and Bay 11-7082 Are Direct Inhibitors of the Inflammasome. Journal of Biological Chemistry, 2010, 285, 9792-9802.	1.6	493
43	Differential cytoprotective effect of copper- and iron-containing chlorophyllins against oxidative stress-mediated cell death. Free Radical Research, 2010, 44, 655-667.	1.5	12
44	AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature, 2009, 458, 509-513.	13.7	1,548
45	Mutations in <i>NALP12</i> cause hereditary periodic fever syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1614-1619.	3.3	331
46	Pyrin Activates the ASC Pyroptosome in Response to Engagement by Autoinflammatory PSTPIP1 Mutants. Molecular Cell, 2007, 28, 214-227.	4.5	261
47	The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death and Differentiation, 2007, 14, 1590-1604.	5.0	854
48	Cryopyrin and pyrin activate caspase-1, but not NF-l°B, via ASC oligomerization. Cell Death and Differentiation, 2006, 13, 236-249.	5.0	313
49	Inhibition of Apoptosis Signal-regulating Kinase 1 by Nitric Oxide through a Thiol Redox Mechanism. Journal of Biological Chemistry, 2004, 279, 7584-7590.	1.6	98
50	Iron Chlorin e6 Scavenges Hydroxyl Radical and Protects Human Endothelial Cells against Hydrogen Peroxide Toxicity Biological and Pharmaceutical Bulletin, 2001, 24, 1053-1059.	0.6	13