Sihui Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4513929/publications.pdf

Version: 2024-02-01

516710 526287 46 832 16 27 h-index citations g-index papers 46 46 46 1034 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Polymorphism and cocrystal salt formation of 2-((2,6-dichlorophenyl)amino)benzoic acid, harvest of a second form of 2-((2,6-dimethylphenyl)amino)benzoic acid, and isomorphism between the two systems. CrystEngComm, 2022, 24, 681-690.	2.6	5
2	Synthesis of (2-(Quinolin-2-yl)phenyl)carbamates by a One-Pot Friedel–Crafts Reaction/Oxidative Umpolung Aza-Grob Fragmentation Sequence. Journal of Organic Chemistry, 2022, 87, 7852-7863.	3.2	3
3	A new solvate of clonixin and a comparison of the two clonixin solvates. RSC Advances, 2021, 11, 24836-24842.	3.6	3
4	Discovery of STAT3 and Histone Deacetylase (HDAC) Dual-Pathway Inhibitors for the Treatment of Solid Cancer. Journal of Medicinal Chemistry, 2021, 64, 7468-7482.	6.4	30
5	GLUT1 biological function and inhibition: research advances. Future Medicinal Chemistry, 2021, 13, 1227-1243.	2.3	17
6	Synthon Polymorphism and π–π Stacking in <i>N</i> -Phenyl-2-hydroxynicotinanilides. Crystal Growth and Design, 2021, 21, 6155-6165.	3.0	9
7	Molecular Docking and Virtual Screening of an Influenza Virus Inhibitor That Disrupts Protein–Protein Interactions. Viruses, 2021, 13, 2229.	3.3	10
8	Double substitution leads to a highly polymorphic system in 5-methyl-2-m-tolylamino-benzoic acid. CrystEngComm, 2021, 24, 95-106.	2.6	4
9	Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. European Journal of Medicinal Chemistry, 2020, 185, 111804.	5. 5	80
10	An investigation of the polymorphism of a potent nonsteroidal anti-inflammatory drug flunixin. CrystEngComm, 2020, 22, 448-457.	2.6	6
11	Steric Effect Determines the Formation of Lactam–Lactam Dimers or Amide Câ•O···NH (Lactam) Chain Motifs in <i>N</i> -Phenyl-2-hydroxynicotinanilides. Crystal Growth and Design, 2020, 20, 4346-4357.	3.0	5
12	Stereoselective Construction of Nitrileâ€Substituted Cyclopropanes from 2â€Substituted Ethenesulfonyl Fluorides <i>via</i> Carbonâ€Sulfur Bond Cleavage. Advanced Synthesis and Catalysis, 2019, 361, 4596-4601.	4.3	16
13	Effect of Substituent Size and Isomerization on the Polymorphism of 2-(Naphthalenylamino)-benzoic Acids. Crystal Growth and Design, 2019, 19, 3694-3703.	3.0	6
14	Pharmaceutical significance of azepane based motifs for drug discovery: A critical review. European Journal of Medicinal Chemistry, 2019, 162, 465-494.	5.5	55
15	Enhanced Targeted Delivery of Doxorubicin Based on Acid Induced Charge Reversal and Combinational Stimuliâ€Responsive Nanocarrier. Advanced Engineering Materials, 2018, 20, 1701151.	3.5	7
16	Zwitterion formation and subsequent carboxylate–pyridinium NH synthon generation through isomerization of 2-anilinonicotinic acid. CrystEngComm, 2018, 20, 6126-6132.	2.6	1
17	Peptidomimicry with C ₂ â€Symmetric Oligourea Derivatives of 1,2â€Diaminocyclohexane and 1,2â€Diphenylâ€1,2â€diaminoethane: Chirality and Chain Lengthâ€Dependent Conformation. ChemistrySelect, 2018, 3, 11035-11041.	1.5	0
18	Substituent Electronegativity and Isostructurality in the Polymorphism of Clonixin Analogues. Crystal Growth and Design, 2018, 18, 7006-7014.	3.0	8

#	Article	IF	CITATIONS
19	Combating a Master Manipulator: <i>Staphylococcus aureus</i> Immunomodulatory Molecules as Targets for Combinatorial Drug Discovery. ACS Combinatorial Science, 2018, 20, 681-693.	3.8	54
20	Solution growth and thermal treatment of crystals lead to two new forms of 2-((2,6-dimethylphenyl)amino)benzoic acid. RSC Advances, 2018, 8, 15459-15470.	3.6	10
21	Structural Isomerization of 2-Anilinonicotinic Acid Leads to a New Synthon in 6-Anilinonicotinic Acids. Crystal Growth and Design, 2018, 18, 4849-4859.	3.0	3
22	Strong Hydrogen Bond Leads to a Fifth Crystalline Form and Polymorphism of Clonixin. ChemistrySelect, 2017, 2, 4942-4950.	1.5	15
23	Solid-State Characterization of 2-[(2,6-Dichlorophenyl)amino]-Benzaldehyde: An Experimental and Theoretical Investigation. Journal of the Chinese Chemical Society, 2017, 64, 531-538.	1.4	5
24	^{sp2} CHâ<⁻Cl hydrogen bond in the conformational polymorphism of 4-chloro-phenylanthranilic acid. CrystEngComm, 2017, 19, 4345-4354.	2.6	18
25	Tautomeric Polymorphism of 4-Hydroxynicotinic Acid. Crystal Growth and Design, 2016, 16, 2573-2580.	3.0	23
26	Acid and reduction stimulated logic "and―type combinational release mode achieved in DOX-loaded superparamagnetic nanogel. Materials Science and Engineering C, 2016, 65, 354-363.	7.3	11
27	Preferred formation of the carboxylic acid–pyridine heterosynthon in 2-anilinonicotinic acids. RSC Advances, 2016, 6, 81101-81109.	3.6	11
28	Achievement of Release Mode under Combinational Stimuli by Acid and Reduction for Reduced Adverse Effect in Antitumor Efficacy. Macromolecular Materials and Engineering, 2016, 301, 1255-1266.	3.6	4
29	Synthesis of selenium nanoparticles with mesoporous silica drug-carrier shell for programmed responsive tumor targeted synergistic therapy. RSC Advances, 2016, 6, 2171-2175.	3.6	14
30	A Pseudoâ€Model Strategy Combining Experiment and Model to Investigate the Targeting Efficiency of Injected Magnetic Nanoparticles as Therapeutics Carriers. Advanced Engineering Materials, 2015, 17, 1511-1517.	3.5	0
31	Polymorphism and solid-to-solid phase transitions of a simple organic molecule, 3-chloroisonicotinic acid. CrystEngComm, 2015, 17, 2389-2397.	2.6	15
32	Tailor-made magnetic nanocarriers with pH-induced charge reversal and pH-responsiveness to guide subcellular release of doxorubicin. Journal of Materials Science, 2015, 50, 2429-2442.	3.7	17
33	Solid-state identity of 2-hydroxynicotinic acid and its polymorphism. CrystEngComm, 2015, 17, 5195-5205.	2.6	19
34	A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Advances, 2015, 5, 73416-73423.	3.6	49
35	Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking. Materials Science and Engineering C, 2015, 46, 41-51.	7.3	46
36	From Competition to Commensuration by Two Major Hydrogen-Bonding Motifs. Crystal Growth and Design, 2014, 14, 27-31.	3.0	19

#	Article	IF	CITATION
37	Negatively charged gold nanoparticles as an intrinsic peroxidase mimic and their applications in the oxidation of dopamine. Journal of Materials Science, 2014, 49, 7143-7150.	3.7	57
38	Phase Transition from Two $\langle i \rangle Z \langle i \rangle \hat{a} \in ^2$ = 1 Forms to a $\langle i \rangle Z \langle i \rangle \hat{a} \in ^2$ = 2 Form of a Concomitant Conformational Polymorphic System. Crystal Growth and Design, 2011, 11, 414-421.	3.0	25
39	Enforcing Molecule's Ï€-Conjugation and Consequent Formation of the Acidâ^Acid Homosynthon over the Acidâ^Pyridine Heterosynthon in 2-Anilinonicotinic Acids. Crystal Growth and Design, 2010, 10, 2465-2469.	3.0	25
40	Controlled Formation of the Acidâ^'Pyridine Heterosynthon over the Acidâ^'Acid Homosynthon in 2-Anilinonicotinic Acids. Crystal Growth and Design, 2009, 9, 4993-4997.	3.0	34
41	Polymorphism of an Organic System Effected by the Directionality of Hydrogen-Bonding Chains. Crystal Growth and Design, 2008, 8, 3137-3140.	3.0	29
42	Polymorphism and Phase Behaviors of 2-(Phenylamino)nicotinic Acid. Crystal Growth and Design, 2008, 8, 4006-4013.	3.0	49
43	Inversion symmetry and local vs. dispersive interactions in the nucleation of hydrogen bonded cyclic n-mer and tape of imidazolecarboxamidines. Beilstein Journal of Organic Chemistry, 2008, 4, 23.	2.2	2
44	6-Oxo-1,6-dihydropyridine-3-carboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2784-o2784.	0.2	7
45	N-(3-Chloro-2-methylphenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4278-o4279.	0.2	4
46	Conformational flexibility and substitution pattern lead to polymorphism of 3-methyl-2-(phenylamino)benzoic acid. CrystEngComm, 0, , .	2.6	2