Ho Seok Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4513812/publications.pdf Version: 2024-02-01

HO SEOK DADK

#	Article	IF	CITATIONS
1	Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors. ACS Nano, 2011, 5, 7205-7213.	7.3	458
2	Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors. ACS Nano, 2010, 4, 2910-2918.	7.3	343
3	Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy and Environmental Science, 2020, 13, 1049-1075.	15.6	285
4	Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon, 2016, 101, 49-56.	5.4	275
5	MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. Joule, 2019, 3, 164-176.	11.7	250
6	Graphene-based materials for capacitive deionization. Journal of Materials Chemistry A, 2017, 5, 13907-13943.	5.2	242
7	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	10.2	226
8	Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes. ACS Nano, 2011, 5, 5167-5174.	7.3	215
9	Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nature Materials, 2019, 18, 156-162.	13.3	215
10	Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. Advanced Energy Materials, 2015, 5, 1500959.	10.2	208
11	Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel. Chemical Engineering Journal, 2015, 269, 229-235.	6.6	193
12	Transition from Diffusion ontrolled Intercalation into Extrinsically Pseudocapacitive Charge Storage of MoS ₂ by Nanoscale Heterostructuring. Advanced Energy Materials, 2016, 6, 1501115.	10.2	185
13	Recent Progress on Transition Metal Oxides as Bifunctional Catalysts for Lithiumâ€Air and Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 336-347.	2.4	173
14	Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Materials, 2019, 19, 212-241.	9.5	163
15	Redox Tuning in Crystalline and Electronic Structure of Bimetal–Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance. Advanced Materials, 2019, 31, e1905744.	11.1	158
16	Integrated Conductive Hybrid Architecture of Metal–Organic Framework Nanowire Array on Polypyrrole Membrane for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Energy Materials, 2020, 10, 1901892.	10.2	154
17	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chemistry - an Asian Journal, 2020, 15, 995-1013.	1.7	154
18	Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. Journal of Materials Chemistry A, 2019, 7, 16962-16968.	5.2	153

#	Article	IF	CITATIONS
19	Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets. Carbon, 2012, 50, 5395-5402.	5.4	152
20	Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure. Journal of Industrial and Engineering Chemistry, 2015, 21, 1191-1196.	2.9	149
21	Reversibly Compressible, Highly Elastic, and Durable Graphene Aerogels for Energy Storage Devices under Limiting Conditions. Advanced Functional Materials, 2015, 25, 1053-1062.	7.8	143
22	Alloy Anodes for Rechargeable Alkali-Metal Batteries: Progress and Challenge. , 2019, 1, 217-229.		135
23	Superior Pseudocapacitive Behavior of Confined Lignin Nanocrystals for Renewable Energyâ€Storage Materials. ChemSusChem, 2014, 7, 1094-1101.	3.6	132
24	Perspective on the critical role of interface for advanced batteries. Journal of Energy Chemistry, 2020, 47, 217-220.	7.1	127
25	Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. Journal of Power Sources, 2016, 303, 372-378.	4.0	124
26	Perspective on Highâ€Energy Carbonâ€Based Supercapacitors. Energy and Environmental Materials, 2020, 3, 286-305.	7.3	124
27	Capacitive deionization of saline water using sandwich-like nitrogen-doped graphene composites <i>>via</i> a self-assembling strategy. Environmental Science: Nano, 2018, 5, 2722-2730.	2.2	118
28	Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon, 2014, 77, 59-65.	5.4	114
29	Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. ACS Nano, 2015, 9, 8569-8577.	7.3	113
30	Superstrong, superstiff, and conductive alginate hydrogels. Nature Communications, 2022, 13, .	5.8	112
31	Hexagonal plate-like Ni–Co–Mn hydroxide nanostructures to achieve high energy density of hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 11362-11369.	5.2	110
32	Anomalous nanoinclusion effects of 2D MoS2 and WS2 nanosheets on the mechanical stiffness of polymer nanocomposites. Nanoscale, 2014, 6, 7430.	2.8	104
33	Ultrafast and Continuous Synthesis of Unaccommodating Inorganic Nanomaterials in Droplet- and Ionic Liquid-Assisted Microfluidic System. Journal of the American Chemical Society, 2011, 133, 14765-14770.	6.6	103
34	Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture. Advanced Materials, 2019, 31, e1803444.	11.1	103
35	Enhanced Pseudocapacitance of Ionic Liquid/Cobalt Hydroxide Nanohybrids. ACS Nano, 2013, 7, 2453-2460.	7.3	99
36	Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes. Journal of Power Sources, 2015, 278, 484-489.	4.0	95

#	Article	IF	CITATIONS
37	Omnidirectionally Stretchable and Transparent Graphene Electrodes. ACS Nano, 2016, 10, 9446-9455.	7.3	94
38	A functional separator coated with sulfonated metal–organic framework/Nafion hybrids for Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 24971-24978.	5.2	93
39	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	18.7	93
40	Stabilizing NiCo ₂ O ₄ hybrid architectures by reduced graphene oxide interlayers for improved cycling stability of hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22106-22114.	5.2	88
41	Surface-Modified Sulfur Nanorods Immobilized on Radially Assembled Open-Porous Graphene Microspheres for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 5163-5171.	7.3	88
42	Facile Route to Synthesize Large-Mesoporous Î ³ -Alumina by Room Temperature Ionic Liquids. Chemistry of Materials, 2007, 19, 535-542.	3.2	87
43	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	7.8	86
44	Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures. Nano Energy, 2015, 15, 576-586.	8.2	85
45	Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. Journal of Power Sources, 2018, 402, 147-156.	4.0	85
46	Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance. Chemical Engineering Journal, 2020, 382, 122996.	6.6	84
47	Influence of Morphology on the Transport Properties of Perfluorosulfonate Ionomers/Polypyrrole Composite Membrane. Macromolecules, 2005, 38, 2289-2295.	2.2	83
48	Development of a Glucose Biosensor Using Advanced Electrode Modified by Nanohybrid Composing Chemically Modified Graphene and Ionic Liquid. Electroanalysis, 2010, 22, 1223-1228.	1.5	83
49	Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Heteronanosheets in Hierarchical Architectures. Nano Letters, 2015, 15, 2269-2277.	4.5	80
50	Influence of Additives Including Amine and Hydroxyl Groups on Aqueous Ammonia Absorbent for CO ₂ Capture. Journal of Physical Chemistry B, 2008, 112, 4323-4328.	1.2	77
51	Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery. Chemical Engineering Journal, 2019, 369, 422-431.	6.6	75
52	Chemical modification of graphene aerogels for electrochemical capacitor applications. Physical Chemistry Chemical Physics, 2015, 17, 30946-30962.	1.3	74
53	Electronically coupled layered double hydroxide/ <scp>MXene</scp> quantum dot metallic hybrids for highâ€performance flexible zinc–air batteries. InformaÄnÃ-Materiály, 2021, 3, 1134-1144.	8.5	73
54	Ionicâ€Liquidâ€Assisted Sonochemical Synthesis of Carbonâ€Nanotubeâ€Based Nanohybrids: Control in the Structures and Interfacial Characteristics. Small, 2009, 5, 1754-1760.	5.2	69

#	Article	IF	CITATIONS
55	Metersâ€Long Flexible CoNiO ₂ â€Nanowires@Carbonâ€Fibers Based Wireâ€Supercapacitors for Wearable Electronics. Advanced Materials Technologies, 2016, 1, 1600142.	3.0	69
56	CO ₂ -activated, hierarchical trimodal porous graphene frameworks for ultrahigh and ultrafast capacitive behavior. Nanoscale, 2014, 6, 5296-5302.	2.8	68
57	10 ⁵ Cyclable Pseudocapacitive Na-Ion Storage of Hierarchically Structured Phosphorus-Incorporating Nanoporous Carbons in Organic Electrolytes. ACS Energy Letters, 2018, 3, 724-732.	8.8	68
58	Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors. Energy Storage Materials, 2020, 25, 70-75.	9.5	68
59	Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline composite membrane for DMFC. Journal of Membrane Science, 2008, 324, 102-110.	4.1	67
60	Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC. Journal of Membrane Science, 2006, 272, 28-36.	4.1	66
61	Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. Journal of Power Sources, 2013, 235, 187-192.	4.0	66
62	Core–Shell Structured MXene@Carbon Nanodots as Bifunctional Catalysts for Solar-Assisted Water Splitting. ACS Nano, 2020, 14, 17615-17625.	7.3	66
63	Superhydrophobic Graphene/Nafion Nanohybrid Films with Hierarchical Roughness. Journal of Physical Chemistry C, 2012, 116, 3207-3211.	1.5	65
64	Highâ€Performance Mesostructured Organic Hybrid Pseudocapacitor Electrodes. Advanced Functional Materials, 2016, 26, 903-910.	7.8	63
65	Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application. Journal of Alloys and Compounds, 2018, 741, 549-556.	2.8	63
66	Development of the electrochemical biosensor for organophosphate chemicals using CNT/ionic liquid bucky gel electrode. Electrochemistry Communications, 2009, 11, 672-675.	2.3	61
67	Hierarchically structured reduced graphene oxide/WO3 frameworks for an application into lithium ion battery anodes. Chemical Engineering Journal, 2015, 281, 724-729.	6.6	61
68	Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode. Chemical Engineering Journal, 2020, 382, 122946.	6.6	61
69	Analysis of the CO ₂ and NH ₃ Reaction in an Aqueous Solution by 2D IR COS: Formation of Bicarbonate and Carbamate. Journal of Physical Chemistry A, 2008, 112, 6558-6562.	1.1	60
70	Steric hindrance-induced zwitterionic carbonates from alkanolamines and CO2: highly efficient CO2 absorbents. Energy and Environmental Science, 2011, 4, 4284.	15.6	60
71	Biomimetic Spiderâ€Webâ€Like Composites for Enhanced Rate Capability and Cycle Life of Lithium Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1700331.	10.2	60
72	Ti-based electrode materials for electrochemical sodium ion storage and removal. Journal of Materials Chemistry A, 2019, 7, 22163-22188.	5.2	59

#	Article	IF	CITATIONS
73	Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem, 2022, 4, 100076.	10.1	59
74	Straightforward and controllable synthesis of heteroatom-doped carbon dots and nanoporous carbons for surface-confined energy and chemical storage. Energy Storage Materials, 2018, 12, 331-340.	9.5	58
75	Flow-injection amperometric glucose biosensors based on graphene/Nafion hybrid electrodes. Electrochimica Acta, 2011, 56, 9721-9726.	2.6	57
76	Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor. Nanoscale, 2010, 2, 2692.	2.8	56
77	Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film. Nanoscale, 2015, 7, 6798-6804.	2.8	56
78	Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide. Applied Catalysis B: Environmental, 2019, 255, 117736.	10.8	56
79	Phase- and interlayer spacing-controlled cobalt hydroxides for high performance asymmetric supercapacitor applications. Journal of Power Sources, 2019, 422, 9-17.	4.0	56
80	The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries. Journal of Energy Chemistry, 2020, 49, 335-338.	7.1	55
81	Adsorption of Pyruvic and Succinic Acid by Amine-Functionalized SBA-15 for the Purification of Succinic Acid from Fermentation Broth. Journal of Physical Chemistry C, 2007, 111, 13076-13086.	1.5	54
82	Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Materials, 2019, 19, 197-205.	9.5	54
83	Directed Selfâ€Assembly of Gold Nanoparticles on Grapheneâ€ l onic Liquid Hybrid for Enhancing Electrocatalytic Activity. Electroanalysis, 2011, 23, 850-857.	1.5	51
84	Iron Oxide Nanoparticleâ€Encapsulated CNT Branches Grown on 3D Ozonated CNT Internetworks for Lithiumâ€ion Battery Anodes. Advanced Functional Materials, 2018, 28, 1801746.	7.8	51
85	Rational Design of Hierarchically Openâ€Porous Spherical Hybrid Architectures for Lithium″on Batteries. Advanced Energy Materials, 2019, 9, 1802816.	10.2	48
86	Electrochemical assembly of MnO2 on ionic liquid–graphene films into a hierarchical structure for high rate capability and long cycle stability of pseudocapacitors. Nanoscale, 2012, 4, 5394.	2.8	46
87	Intermolecular Interaction-Induced Hierarchical Transformation in 1D Nanohybrids:Â Analysis of Conformational Changes by 2D Correlation Spectroscopy. Journal of the American Chemical Society, 2008, 130, 845-852.	6.6	44
88	Graphene-Graphene Oxide Floating Gate Transistor Memory. Small, 2015, 11, 311-318.	5.2	44
89	Electrode materials for biomedical patchable and implantable energy storage devices. Energy Storage Materials, 2020, 24, 113-128.	9.5	44
90	Ionicâ€Conducting and Robust Multilayered Solid Electrolyte Interphases for Greatly Improved Rate and Cycling Capabilities of Sodium Ion Full Cells. Advanced Energy Materials, 2020, 10, 2001418.	10.2	44

#	Article	IF	CITATIONS
91	Microfluidic extraction using two phase laminar flow for chemical and biological applications. Korean Journal of Chemical Engineering, 2011, 28, 633-642.	1.2	42
92	Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems. ACS Energy Letters, 2021, 6, 2460-2468.	8.8	42
93	Sonochemical hybridization of carbon nanotubes with gold nanoparticles for the production of flexible transparent conducing films. Carbon, 2010, 48, 1325-1330.	5.4	41
94	Interfacial Interactions of Single-Walled Carbon Nanotube/Conjugated Block Copolymer Hybrids for Flexible Transparent Conductive Films. Journal of Physical Chemistry C, 2012, 116, 7962-7967.	1.5	41
95	Multiscale textured, ultralight graphene monoliths for enhanced CO2 and SO2 adsorption capacity. Fuel, 2016, 174, 36-42.	3.4	41
96	CoO nanoparticles deposited on 3D macroporous ozonized RGO networks for high rate capability and ultralong cyclability of pseudocapacitors. Ceramics International, 2018, 44, 980-987.	2.3	41
97	Sonochemical self-growth of functionalized titanium carbide nanorods on Ti3C2 nanosheets for high capacity anode for lithium-ion batteries. Composites Part B: Engineering, 2020, 181, 107583.	5.9	41
98	Multidimensional Hybrid Architecture Encapsulating Cobalt Oxide Nanoparticles into Carbon Nanotube Branched Nitrogenâ€Doped Reduced Graphene Oxide Networks for Lithium–Sulfur Batteries. Energy and Environmental Materials, 2022, 5, 555-564.	7.3	40
99	Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Applied Physics Reviews, 2022, 9, .	5.5	40
100	Highly flexible pseudocapacitors of phosphorus-incorporated porous reduced graphene oxide films. Journal of Power Sources, 2018, 390, 93-99.	4.0	39
101	A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design, Preparation, and Properties. Polymers, 2021, 13, 1312.	2.0	39
102	Surface functional groups of carbon nanotubes to manipulate capacitive behaviors. Nanoscale, 2013, 5, 12304.	2.8	38
103	Materials and Device Constructions for Aqueous Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707593.	7.8	38
104	Full Bulkâ€ S tructure Reconstruction into Amorphorized Cobalt–Iron Oxyhydroxide Nanosheet Electrocatalysts for Greatly Improved Electrocatalytic Activity. Small Methods, 2020, 4, 2000546.	4.6	38
105	Metal–organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. Journal of Materials Chemistry A, 2020, 8, 12418-12423.	5.2	38
106	Anion-exchange phase control of manganese sulfide for oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 3901-3909.	5.2	37
107	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	5.2	37
108	Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide. Materials Science and Engineering C, 2016, 69, 160-170.	3.8	36

#	Article	IF	CITATIONS
109	Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale, 2016, 8, 12900-12909.	2.8	35
110	Anomalous thermal transition and crystallization of ionic liquids confined in graphene multilayers. Chemical Communications, 2012, 48, 2015.	2.2	34
111	One pot catalytic NO2 reduction, ring hydrogenation, and N-alkylation from nitroarenes to generate alicyclic amines using Ru/C-NaNO2. Catalysis Communications, 2014, 43, 79-83.	1.6	34
112	Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance. Environmental Science: Nano, 2019, 6, 916-924.	2.2	34
113	1D and 3D Ionic Liquid–Aluminum Hydroxide Hybrids Prepared via an Ionothermal Process. Advanced Functional Materials, 2007, 17, 2411-2418.	7.8	33
114	Improving energy density of supercapacitors using heteroatom-incorporated three-dimensional macro-porous graphene electrodes and organic electrolytes. Journal of Power Sources, 2018, 399, 83-88.	4.0	33
115	Two-Dimensional Pseudocapacitive Nanomaterials for High-Energy- and High-Power-Oriented Applications of Supercapacitors. Accounts of Materials Research, 2021, 2, 86-96.	5.9	33
116	Structure and compositional control of MoO3 hybrids assembled by nanoribbons for improved pseudocapacitor rate and cycle performance. Nanoscale, 2012, 4, 7855.	2.8	31
117	Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. Journal of Power Sources, 2008, 178, 610-619.	4.0	30
118	Bio-inspired functionalization and redox charge transfer of graphene oxide sponges for pseudocapacitive electrodes. Carbon, 2015, 83, 71-78.	5.4	30
119	Porous interconnected NiCo2O4 nanosheets and nitrogen- and sulfur-codoped reduced graphene oxides for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2019, 781, 515-523.	2.8	30
120	Extremely Foldable and Highly Porous Reduced Graphene Oxide Films for Shapeâ€Adaptive Triboelectric Nanogenerators. Small, 2021, 17, e1903089.	5.2	30
121	Controlling Size, Amount, and Crystalline Structure of Nanoparticles Deposited on Graphenes for Highly Efficient Energy Conversion and Storage. ChemSusChem, 2012, 5, 709-715.	3.6	29
122	Multiple Active Sites Carbonaceous Anodes for Na ⁺ Storage: Synthesis, Electrochemical Properties and Reaction Mechanism Analysis. Advanced Functional Materials, 2021, 31, 2007247.	7.8	29
123	<scp>3D</scp> flowerâ€like oxygenâ€deficient nonâ€stoichiometry zinc cobaltite for high performance hybrid supercapacitors. International Journal of Energy Research, 2021, 45, 10832-10842.	2.2	29
124	Chlorella-derived activated carbon with hierarchical pore structure for energy storage materials and adsorbents. Carbon Letters, 2019, 29, 167-175.	3.3	28
125	Two-Dimensional Metallic Niobium Diselenide for Sub-micrometer-Thin Antennas in Wireless Communication Systems. ACS Nano, 2019, 13, 14114-14121.	7.3	28
126	Electrochemical Activation of 2D MXeneâ€Based Hybrid for High Volumetric Mgâ€Ion Storage Capacitance. Batteries and Supercaps, 2020, 3, 354-360.	2.4	28

#	Article	IF	CITATIONS
127	Layered Double Hydroxide Quantum Dots for Use in a Bifunctional Separator of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 17978-17987.	4.0	28
128	Finely tuning oxygen functional groups of graphene materials and optimizing oxygen levels for capacitors. RSC Advances, 2014, 4, 36377.	1.7	27
129	CNT branching of three-dimensional steam-activated graphene hybrid frameworks for excellent rate and cyclic capabilities to store lithium ions. Carbon, 2017, 116, 500-509.	5.4	27
130	Transport and Durability of Energy Storage Materials Operating at High Temperatures. ACS Nano, 2020, 14, 7696-7703.	7.3	27
131	Mussel-mimetic self-healing polyaspartamide derivative gel via boron-catechol interactions. EXPRESS Polymer Letters, 2015, 9, 799-808.	1.1	27
132	Fabrication and characterization of block copolymer micelle multilayer films prepared using dip-, spin- and spray-assisted layer-by-layer assembly deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 7-12.	2.3	26
133	Phase-Controlled Iron Oxide Nanobox Deposited on Hierarchically Structured Graphene Networks for Lithium Ion Storage and Photocatalysis. Scientific Reports, 2016, 6, 19959.	1.6	26
134	Electrochemical assembly of reduced graphene oxide/manganese dioxide nanocomposites into hierarchical sea urchin-like structures for supercapacitive electrodes. Journal of Alloys and Compounds, 2016, 668, 146-151.	2.8	26
135	Carbon nanotubes branched on three-dimensional, nitrogen-incorporated reduced graphene oxide/iron oxide hybrid architecturesÂfor lithium ion battery anode. Journal of Alloys and Compounds, 2017, 726, 88-94.	2.8	26
136	Facile Multivalent Redox Chemistries in Water-in-Bisalt Hydrogel Electrolytes for Hybrid Energy Storage Full Cells. ACS Energy Letters, 2020, 5, 1054-1061.	8.8	26
137	Controlled growth and interaction of NiCo2S4 on conductive substrate for enhanced electrochemical performance. Journal of Power Sources, 2020, 451, 227763.	4.0	26
138	Immobilization of genetically engineered fusion proteins on gold-decorated carbon nanotube hybrid films for the fabrication of biosensor platforms. Journal of Colloid and Interface Science, 2010, 350, 453-458.	5.0	25
139	Facile electrochemical synthesis of polydopamine-incorporated graphene oxide/PEDOT hybrid thin films for pseudocapacitive behaviors. Synthetic Metals, 2014, 195, 162-166.	2.1	25
140	Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery. Journal of Power Sources, 2017, 372, 31-37.	4.0	25
141	Chemical modification of ordered/disordered carbon nanostructures for metal hosts and electrocatalysts of <scp>lithiumâ€air</scp> batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	25
142	Programmable peptide-directed two dimensional arrays of various nanoparticles on graphene sheets. Nanoscale, 2011, 3, 3208.	2.8	24
143	Massâ€Produced Electrochemically Exfoliated Graphene for Ultrahigh Thermally Conductive Paper Using a Multimetal Electrode System. Advanced Materials Interfaces, 2019, 6, 1900095.	1.9	24
144	Mesoporous VO2(B) nanorods deposited onto graphene architectures for enhanced rate capability and cycle life of Li ion battery cathodes. Journal of Alloys and Compounds, 2021, 855, 157361.	2.8	24

#	Article	IF	CITATIONS
145	Structural Engineering of Ultrathin ReS ₂ on Hierarchically Architectured Graphene for Enhanced Oxygen Reduction. ACS Nano, 2021, 15, 5560-5566.	7.3	24
146	Hollow triple-shelled SiO2/TiO2/polypyrrole nanospheres for enhanced lithium storage capability. Chemical Engineering Journal, 2014, 237, 380-386.	6.6	23
147	Nanoindentation of annealed Nafion/sulfonated graphene oxide nanocomposite membranes for the measurement of mechanical properties. Journal of Membrane Science, 2014, 451, 40-45.	4.1	23
148	Spray-drying assisted synthesis of a Li4Ti5O12/C composite for high rate performance lithium ion batteries. Ceramics International, 2018, 44, 2683-2690.	2.3	23
149	Two-Dimensional Infrared Correlation Spectroscopy and Principal Component Analysis on the Carbonation of Sterically Hindered Alkanolamines. ChemPhysChem, 2012, 13, 3365-3369.	1.0	22
150	Hierarchically structured vanadium pentoxide/reduced graphene oxide composite microballs for lithium ion battery cathodes. Journal of Power Sources, 2019, 436, 226854.	4.0	22
151	Selectively Converting Carbon Dioxide to Syngas over Intermetallic AuCu Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 2609-2615.	3.2	22
152	Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors. Nanoscale, 2013, 5, 3976.	2.8	21
153	Surface modification and partial reduction of three-dimensional macroporous graphene oxide scaffolds for greatly improved adsorption capacity. RSC Advances, 2014, 4, 899-902.	1.7	21
154	Absorption and desorption of SO 2 in aqueous solutions of diamine-based molten salts. Journal of Hazardous Materials, 2015, 289, 63-71.	6.5	21
155	Microwave synthesis of SnO2 nanocrystals decorated on the layer-by-layer reduced graphene oxide for an application into lithium ion battery anode. Journal of Alloys and Compounds, 2017, 702, 636-643.	2.8	21
156	A New Era of Integrative Ice Frozen Assembly into Multiscale Architecturing of Energy Materials. Advanced Functional Materials, 2022, 32, .	7.8	21
157	Energy Transfer in Ionicâ€Liquidâ€Functionalized Inorganic Nanorods for Highly Efficient Photocatalytic Applications. Small, 2010, 6, 290-295.	5.2	20
158	Aqueous synthesis and stabilization of highly concentrated gold nanoparticles using sterically hindered functional polymer. Chemical Physics Letters, 2013, 575, 71-75.	1.2	20
159	Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity. Carbon Letters, 2019, 29, 289-296.	3.3	20
160	2D spinel ZnCo2O4 microsheet-coated functional separator for promoted redox kinetics and inhibited polysulfide dissolution. Journal of Energy Chemistry, 2021, 55, 468-475.	7.1	20
161	Interconnected networkâ€ŀike single crystalline bimetallic carbonate hydroxide nanowires for high performance hybrid supercapacitors. International Journal of Energy Research, 2021, 45, 3064-3074.	2.2	20
162	Surface Redox-Active Organosulfur-Tethered Carbon Nanotubes for High Power and Long Cyclability of Na–Organosulfur Hybrid Energy Storage. ACS Energy Letters, 2021, 6, 280-289.	8.8	20

#	Article	IF	CITATIONS
163	Charge transfer interactions between conjugated block copolymers and reduced graphene oxides. Chemical Communications, 2011, 47, 10293.	2.2	19
164	Binder-free, self-standing films of iron oxide nanoparticles deposited on ionic liquid functionalized carbon nanotubes for lithium-ion battery anodes. Materials Chemistry and Physics, 2014, 144, 396-401.	2.0	19
165	Mechanistic study of synthesis of gold nanoparticles using multi-functional polymer. Chemical Physics Letters, 2014, 592, 265-271.	1.2	19
166	Enhanced anode performance of micro/meso-porous reduced graphene oxide prepared from carbide-derived carbon for energy storage devices. Carbon, 2015, 91, 241-251.	5.4	19
167	Cobalt vanadate nanoparticles as bifunctional oxygen electrocatalysts for rechargeable seawater batteries. Journal of Industrial and Engineering Chemistry, 2019, 72, 250-254.	2.9	19
168	Construction of 1D-MoS2 nanorods/LiNb3O8 heterostructure for enhanced hydrogen evolution. Applied Materials Today, 2020, 18, 100536.	2.3	19
169	Electrochemical and structural evolution of structured V2O5 microspheres during Li-ion intercalation. Journal of Energy Chemistry, 2021, 55, 108-113.	7.1	19
170	Accelerated Li-ion transport through a zwitterion-anchored separator for high-performance Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 25463-25473.	5.2	19
171	Interionic Interactions of Binary Gels Consisting of Pyrrolidinium-Based Zwitterionic Compounds and Lithium Salts. Journal of Physical Chemistry B, 2011, 115, 1743-1750.	1.2	18
172	Carbon Nanotube Modification Using Gum Arabic and Its Effect on the Dispersion and Tensile Properties of Carbon Nanotubes/Epoxy Nanocomposites. Journal of Nanoscience and Nanotechnology, 2011, 11, 7369-7373.	0.9	18
173	One-Pot Self-Assembled, Reduced Graphene Oxide/Palladium Nanoparticle Hybrid Aerogels for Electrocatalytic Applications. Electrochimica Acta, 2015, 180, 902-908.	2.6	18
174	Vertically Aligned NiCo ₂ S ₄ Nanosheets Deposited on Nâ€Doped Graphene for Bifunctional and Durable Electrode of Overall Water Splitting. Advanced Materials Interfaces, 2020, 7, 2000138.	1.9	17
175	Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage. Chemical Communications, 2012, 48, 6381.	2.2	16
176	Restacking-inhibited nitrogen-incorporated mesoporous reduced graphene oxides for high energy supercapacitors. Ceramics International, 2018, 44, 3195-3200.	2.3	16
177	Boosting Redox-Active Sites of 1T MoS ₂ Phase by Phosphorus-Incorporated Hierarchical Graphene Architecture for Improved Li Storage Performances. ACS Applied Materials & Interfaces, 2020, 12, 51329-51336.	4.0	16
178	Nanowire architectured porous bimetallic transition metal oxides for high performance hybrid supercapacitor applications. International Journal of Energy Research, 2021, 45, 18091-18102.	2.2	16
179	Understanding the unique interaction of amine-containing ionic compounds with SO2 for high absorption capacity. RSC Advances, 2013, 3, 25944.	1.7	15
180	The confinement of SnO2nanocrystals into 3D RGO architectures for improved rate and cyclic performance of LIB anode. CrystEngComm, 2016, 18, 6049-6054.	1.3	15

#	Article	IF	CITATIONS
181	Synthesis and characterization of electrospun PAN/2D MoS 2 composite nanofibers. Journal of Industrial and Engineering Chemistry, 2016, 34, 61-65.	2.9	15
182	Electron-spun 2D MoS2-decorated carbon nanofibers as pseudocapacitive electrode material into lithium ion battery. Journal of Alloys and Compounds, 2017, 728, 767-772.	2.8	15
183	Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes. Applied Physics Reviews, 2020, 7, .	5.5	15
184	Bifunctional electrocatalysts based on hierarchical graphene/iron hybrid architectures branched by N-doped CNT. Journal of Alloys and Compounds, 2020, 846, 156244.	2.8	15
185	Mesoporous Rh nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. Journal of Industrial and Engineering Chemistry, 2021, 96, 371-375.	2.9	15
186	<scp>1D</scp> interconnected porous binary transition metal phosphide nanowires for high performance hybrid supercapacitors. International Journal of Energy Research, 2021, 45, 17005-17014.	2.2	15
187	Maximizing the enzyme immobilization of enzymatic glucose biofuel cells through hierarchically structured reduced graphene oxide. International Journal of Energy Research, 2021, 45, 20959-20969.	2.2	15
188	Clean and Facile Solution Synthesis of Iron(III)â€Entrapped γâ€Alumina Nanosorbents for Arsenic Removal. ChemSusChem, 2008, 1, 356-362.	3.6	14
189	Green one-pot assembly of iron-based nanomaterials for the rational design of structure. Chemical Communications, 2009, , 4058.	2.2	14
190	Retransformed graphitic activated carbon from ionic liquid-derived carbon containing nitrogen. Journal of Materials Chemistry A, 2015, 3, 2564-2567.	5.2	14
191	Review on nanomaterials for nextâ€generation batteries with lithium metal anodes. Nano Select, 2020, 1, 94-110.	1.9	14
192	Three-dimensionally macroporous, Si and N-incorporated graphene aerogels for gas adsorbents. Materials Express, 2015, 5, 463-469.	0.2	13
193	Manipulating the glass transition behavior of sulfonated polystyrene by functionalized nanoparticle inclusion. Nanoscale, 2015, 7, 8864-8872.	2.8	13
194	Preparation and characterization of CO2-responsive poly(amino acid) derivatives with guanidine group. Polymer Bulletin, 2015, 72, 2605-2620.	1.7	13
195	Two-dimensional nanomaterials as emerging pseudocapacitive materials. Korean Journal of Chemical Engineering, 2019, 36, 1557-1564.	1.2	13
196	Hierarchical Architectures Based on Ru Nanoparticles/Oxygenâ€Richâ€Carbon Nanotubes for Efficient Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 11150-11157.	1.7	13
197	Phase Transition Method To Form Group 6A Nanoparticles on Carbonaceous Templates. ACS Nano, 2014, 8, 2279-2289.	7.3	12
198	Hyperactive iron carbide@N-doped reduced graphene oxide/carbon nanotube hybrid architecture for rapid CO hydrogenation. Journal of Materials Chemistry A, 2018, 6, 11134-11139.	5.2	12

#	Article	IF	CITATIONS
199	Bifunctional mesoporous CoO/nitrogenâ€incorporated graphene electrocatalysts for highâ€power and longâ€term stability of rechargeable zincâ€air batteries. International Journal of Energy Research, 2021, 45, 6698-6707.	2.2	12
200	Rhenium induced electronic structure modulation of Ni3S2/N-doped graphene for efficient trifunctional electrocatalysis. Composites Part B: Engineering, 2022, 234, 109670.	5.9	12
201	Ionic liquid-assisted direct synthesis of PdO nanoparticles immobilized on boehmite nanoparticles. Journal of Colloid and Interface Science, 2011, 357, 46-49.	5.0	11
202	Rendering High Charge Density of States in Ionic Liquid-Gated MoS ₂ Transistors. Journal of Physical Chemistry C, 2014, 118, 18278-18282.	1.5	11
203	Hierarchical structured, nitrogen-incorporated graphene aerogel for high performance supercapacitor. Macromolecular Research, 2017, 25, 1043-1048.	1.0	11
204	Hybrid doubleâ€network hydrogel based on poly(aspartic acid) and poly(acryl amide) with improved mechanical properties. Journal of Applied Polymer Science, 2018, 135, 45925.	1.3	11
205	Electrospun conductive carbon nanofiber hosts for stable zinc metal anode. International Journal of Energy Research, 2022, 46, 7201-7214.	2.2	11
206	Pseudocapacitance: Emergent Pseudocapacitance of 2D Nanomaterials (Adv. Energy Mater. 13/2018). Advanced Energy Materials, 2018, 8, 1870058.	10.2	10
207	Controllable oxygen-incorporated interlayer-expanded ReS ₂ nanosheets deposited on hollow mesoporous carbon spheres for improved redox kinetics of Li-ion storage. Journal of Materials Chemistry A, 2019, 7, 22070-22078.	5.2	10
208	Ultrafast and reversible anion storage of spinel nanoarchitecture for high-performance alkaline zinc full cells. Applied Physics Reviews, 2021, 8, .	5.5	10
209	Multiphase and Multicomponent Nickelâ€Iron Oxide Heterostructure as an Efficient Separator Modification Layer for Advanced Lithium Sulfur Batteries. Batteries and Supercaps, 2021, 4, 1843-1849.	2.4	10
210	Thermally conducting yet electrically insulating epoxy nanocomposites containing aluminum@electrochemically exfoliated graphene hybrid. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106675.	3.8	10
211	Tracking the transition behavior and dynamics of ionic transport in crystalline ionic gel electrolytes. Chemical Communications, 2009, , 6388.	2.2	9
212	Spectroscopic and Computational Insight into the Intermolecular Interactions between Zwitterâ€Type Ionic Liquids and Water Molecules. ChemPhysChem, 2010, 11, 1711-1717.	1.0	9
213	Controlled assembly of graphene oxide nanosheets within one-dimensional polymer nanostructure. Journal of Colloid and Interface Science, 2013, 406, 24-29.	5.0	9
214	Thread like structured VO2 microspheres for improved lithium-ion storage kinetics and stability. Journal of Alloys and Compounds, 2020, 842, 155721.	2.8	9
215	Synergistic integration of threeâ€dimensional architecture composed of twoâ€dimensional nanostructure ternary metal oxide for highâ€performance hybrid supercapacitors. International Journal of Energy Research, 2021, 45, 21170-21181.	2.2	9
216	<scp>NiFe</scp> â€layered double hydroxide nanosheets grafted onto carbon nanotubes for functional separator of lithium sulfur batteries. International Journal of Energy Research, 2022, 46, 9634-9642.	2.2	9

#	Article	IF	CITATIONS
217	Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors. RSC Advances, 2014, 4, 47827-47832.	1.7	8
218	Development of the Functionalized Nanocomposite Materials for Adsorption/Decontamination of Radioactive Pollutants. Materials, 2021, 14, 2896.	1.3	8
219	RuCo alloys anchoring on hierarchical oxidized CNT architectures with boosted catalytic activity for water splitting. Electrochimica Acta, 2022, 427, 140874.	2.6	8
220	Molybdenum oxynitride nanoparticles on nitrogen-doped CNT architectures for the oxygen evolution reaction. Nanoscale Advances, 2020, 2, 5659-5665.	2.2	7
221	Three-dimensionally macroporous nitrogen and boron co-doped graphene aerogels derived from polyaspartamide for supercapacitor electrodes. Materials Today Communications, 2020, 25, 101495.	0.9	7
222	Analysis of CO2–NH3 reaction dynamics in an aqueous phase by PCA and 2D IR COS. Journal of Industrial and Engineering Chemistry, 2012, 18, 98-104.	2.9	6
223	Ultralight and compressible mussel-inspired dopamine-conjugated poly(aspartic) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 ⁻ 1.7	Tf 50 502 Td
224	Recent Advances in Carbonâ€Based Current Collectors/Hosts for Alkali Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	6
225	Enhanced activity and durability of the oxygen reduction catalysts supported on the surface expanded tubular-type carbon nanofiber. Applied Catalysis B: Environmental, 2017, 217, 192-200.	10.8	5
226	Interfacially Polymerized Polyamide Interlayer onto Ozonated Carbon Nanotube Networks for Improved Stability of Sulfur Cathodes. ChemSusChem, 2020, 13, 2471-2478.	3.6	5
227	Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for <scp>lithiumâ€ion</scp> battery anodes. International Journal of Energy Research, 2022, 46, 15627-15638.	2.2	5
228	Graphite–graphene architecture for Zn-ion hybrid supercapacitor electrodes. Carbon Letters, 2022, 32, 1307-1313.	3.3	5
229	Nanoflakes Decorated Hollow Mesoporous Co3O4 Superstructures for Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2016, 16, 12546-12554.	0.9	4
230	Nanostructured Carbon: Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture (Adv. Mater. 34/2019). Advanced Materials, 2019, 31, 1970239.	11,1	4
231	Enhanced electrical conductivity of doped graphene fiber via vacuum deposition. Carbon Letters, 2020, 31, 613.	3.3	4
232	Redox Charge Transfer Kinetics and Reversibility of VO ₂ in Aqueous and Nonâ€Aqueous Electrolytes of Naâ€lon Storage. Energy and Environmental Materials, 2022, 5, 1222-1228.	7.3	4
233	Flexible Supercapacitor with a Pure DNA Gel Electrolyte. Advanced Materials Interfaces, 2022, 9, .	1.9	4
234	Ionic liquid-dependent morphological changes of CdOx and ZnOx deposited on multiwalled carbon nanotubes. Materials Chemistry and Physics, 2012, 133, 1050-1054.	2.0	3

#	Article	IF	CITATIONS
235	Compositional dependence of the alignment of three-dimensionally macroporous architectures assembled by two-dimensional hybrid nanosheets. Journal of Alloys and Compounds, 2016, 677, 171-177.	2.8	3
236	Study about the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites. Korean Chemical Engineering Research, 2012, 50, 729-732.	0.2	3
237	Hierarchical CoSx/graphene/carbon nanotube hybrid architectures for bifunctional electrocatalysts in zinc-air battery. Journal of Industrial and Engineering Chemistry, 2022, 109, 413-421.	2.9	3
238	Energy Storage: Reversibly Compressible, Highly Elastic, and Durable Graphene Aerogels for Energy Storage Devices under Limiting Conditions (Adv. Funct. Mater. 7/2015). Advanced Functional Materials, 2015, 25, 1159-1159.	7.8	2
239	Hierarchical <scp> ReS ₂ </scp> / <scp>nitrogenâ€doped</scp> graphene hybrid nanoarchitectures for efficient oxygen reduction. International Journal of Energy Research, 2021, 45, 19586-19596.	2.2	2
240	Sorption behavior of slightly reduced, three-dimensionally macroporous graphene oxides for physical loading of oils and organic solvents. Carbon Letters, 2016, 18, 24-29.	3.3	2
241	Lithiumâ€Ion Batteries: Biomimetic Spiderâ€Webâ€Like Composites for Enhanced Rate Capability and Cycle Life of Lithium Ion Battery Anodes (Adv. Energy Mater. 17/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
242	Bulk metal-derived metal oxide nanoparticles on oxidized carbon surface. Journal of Alloys and Compounds, 2018, 752, 198-205.	2.8	1
243	Sodiumâ€Coordinated Polymeric Phthalocyanines as Stable Highâ€Capacity Organic Anodes for Sodiumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	1
244	1D and 3D Shaped Ionic Liquid/Aluminum Hydroxide Nanohybrids for Electrochemical Device. , 2007, , .		0
245	Charge Storage: Transition from Diffusion-Controlled Intercalation into Extrinsically Pseudocapacitive Charge Storage of MoS2 by Nanoscale Heterostructuring (Adv. Energy Mater. 1/2016). Advanced Energy Materials, 2016, 6, .	10.2	0
246	Solid Electrolyte Interphases: Ionicâ€Conducting and Robust Multilayered Solid Electrolyte Interphases for Greatly Improved Rate and Cycling Capabilities of Sodium Ion Full Cells (Adv. Energy Mater.) Tj ETQqO 0 0 rgB1	[/@ve rloc	k d0 Tf 50 2'
247	Materials Science in HUSTâ€SKKU Collaboration. Advanced Functional Materials, 2021, 31, 2010926.	7.8	0
248	Front Cover Image. InformaÄnÄ-MateriÄily, 2021, 3, .	8.5	0

249	Flexible Supercapacitor with a Pure DNA Gel Electrolyte (Adv. Mater. Interfaces 14/2022). Advanced Materials Interfaces, 2022, 9, .		1.9	0	
-----	--	--	-----	---	--