
Shuang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4513439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology, 2014, 25, 055401.	2.6	191
2	High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. Journal of Materials Chemistry A, 2014, 2, 7997-8002.	10.3	135
3	Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2017, 541, 492-499.	8.2	121
4	Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. Journal of Materials Chemistry, 2011, 21, 2187-2193.	6.7	116
5	Silane-cross-linked polybenzimidazole with improved conductivity for high temperature proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2013, 1, 621-629.	10.3	93
6	Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 8412-8421.	7.1	92
7	Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2012, 411-412, 54-63.	8.2	88
8	Base-acid doped polybenzimidazole with high phosphoric acid retention for HT-PEMFC applications. Journal of Membrane Science, 2020, 596, 117722.	8.2	74
9	Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications. Energy and Environmental Science, 2012, 5, 7617.	30.8	73
10	Direct polymerization of a novel sulfonated poly(arylene ether ketone sulfone)/sulfonated poly(vinylalcohol) crosslinked membrane for direct methanol fuel cell applications. Journal of Membrane Science, 2015, 492, 505-517.	8.2	67
11	Cross-Linkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term Conductivity Stability in Polybenzimidazole Based PEMs. ACS Sustainable Chemistry and Engineering, 2018, 6, 16352-16362.	6.7	63
12	Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains. Journal of Membrane Science, 2016, 509, 173-181.	8.2	61
13	Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications. Applied Surface Science, 2019, 465, 332-339.	6.1	59
14	Multifunctional poly(ionic liquid)s cross-linked polybenzimidazole membrane with excellent long-term stability for high temperature-proton exchange membranes fuel cells. Journal of Power Sources, 2021, 494, 229732.	7.8	53
15	High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte. ACS Applied Materials & Interfaces, 2015, 7, 26658-26665.	8.0	52
16	Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2014, 2, 13996-14003.	10.3	50
17	Sandwich-like MXene/α-Fe ₂ O ₃ –C–MoS ₂ -PEDOT:PSS/MXene Film Electrodes with Ultrahigh Area Capacitance for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 9172-9182.	8.0	50
18	Considerations of the morphology in the design of proton exchange membranes: Cross-linked sulfonated poly(ether ether ketone)s using a new carboxyl-terminated benzimidazole as the cross-linker for PEMFCs. International Journal of Hydrogen Energy, 2011, 36, 2197-2206.	7.1	48

SHUANG WANG

#	Article	IF	CITATIONS
19	Composite membranes based on polybenzimidazole and ionic liquid functional Si–O–Si network for HT-PEMFC applications. International Journal of Hydrogen Energy, 2017, 42, 21913-21921.	7.1	47
20	Macromolecular cross-linked polybenzimidazole based on bromomethylated poly (aryl ether ketone) with enhanced stability for high temperature fuel cell applications. Journal of Power Sources, 2013, 243, 102-109.	7.8	46
21	Organic-inorganic composite membrane based on sulfonated poly (arylene ether ketone sulfone) with excellent long-term stability for proton exchange membrane fuel cells. Journal of Membrane Science, 2017, 529, 243-251.	8.2	46
22	Effect of "bridge―on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550. Journal of Power Sources, 2017, 340, 126-138.	7.8	45
23	Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 185-194.	5.3	40
24	Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs. Electrochimica Acta, 2018, 283, 691-698.	5.2	36
25	Poly (aryl ether ketone)/polymeric ionic liquid with anisotropic swelling behavior for anion exchange membranes. Journal of Membrane Science, 2019, 581, 303-311.	8.2	36
26	Ethyl phosphoric acid grafted amino-modified polybenzimidazole with improved long-term stability for high-temperature proton exchange membrane applications. International Journal of Hydrogen Energy, 2020, 45, 3176-3185.	7.1	36
27	HT-PEMs based on carbazole grafted polybenzimidazole with high proton conductivity and excellent tolerance of phosphoric acid. Journal of Membrane Science, 2021, 637, 119610.	8.2	33
28	High-temperature water-free proton conducting membranes based on poly(arylene ether ketone) containing pendant quaternary ammonium groups with enhanced proton transport. Journal of Power Sources, 2011, 196, 9331-9338.	7.8	31
29	High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 17742-17750.	8.0	31
30	The impact of poly (ionic liquid) on the phosphoric acid stability of polybenzimidazole-base HT-PEMs. Renewable Energy, 2021, 163, 1692-1700.	8.9	31
31	Sandwich-like high-load MXene/polyaniline film electrodes with ultrahigh volumetric capacitance for flexible supercapacitors. Journal of Colloid and Interface Science, 2022, 620, 35-46.	9.4	27
32	Comparative studies on electrochemical cycling behavior of two different silica-based ionogels. Journal of Power Sources, 2016, 301, 299-305.	7.8	25
33	Sulfonated poly(ether ether ketone)/polybenzimidazole oligomer/epoxy resin composite membranes in situ polymerization for direct methanol fuel cell usages. Journal of Power Sources, 2011, 196, 9916-9923.	7.8	23
34	Novel double cross-linked membrane based on poly (ionic liquid) and polybenzimidazole for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2021, 515, 230637.	7.8	23
35	Flame-retardant AEMs based on organic-inorganic composite polybenzimidazole membranes with enhanced hydroxide conductivity. Journal of Membrane Science, 2019, 591, 117306.	8.2	21
36	High-stable, outstanding heat resistance ionogel electrolyte and the poly(3,4-ethylenedioxythiophene) electrodes with excellent long-term stability for all-solid-state supercapacitor. Chemical Engineering Journal, 2021, 417, 129269.	12.7	21

SHUANG WANG

#	Article	IF	CITATIONS
37	Facilitating Proton Transport with Enhanced Water Conservation Membranes for Direct Methanol Fuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 5880-5890.	6.7	19
38	HT-PEMs based on nitrogen-heterocycle decorated poly (arylene ether ketone) with enhanced proton conductivity and excellent stability. International Journal of Hydrogen Energy, 2018, 43, 16248-16257.	7.1	10
39	High temperature all-solid flexible supercapacitor based on novel cross-linked polybenzimidazole electrolyte. Journal of Energy Storage, 2020, 32, 101901.	8.1	10
40	Polyvinyl alcohol/quaternary ammonium chitosan hydrogel electrolyte for sensing supercapacitors with excellent performance. Journal of Energy Storage, 2022, 46, 103918.	8.1	10
41	High-Performance Proton Exchange Membranes Based on Block Polybenzimidazole and Organic–Inorganic Fillers with a Low Acid Doping Level. ACS Applied Energy Materials, 2022, 5, 2553-2563.	5.1	10
42	An all-in-one flexible supercapacitor based on redox ionogel electrolyte with high cycle performance. Journal of Alloys and Compounds, 2022, 893, 162197.	5.5	9
43	Diazoniabicyclo-type poly (ionic liquid) cross-linked polybenzimidazole membrane with improved phosphoric acid retention for HT-PEMFCs. International Journal of Hydrogen Energy, 2022, 47, 22522-22531.	7.1	7
44	Hydroxypolybenzimidazole Electrolyte with Excellent Stability for High Power Density All-Solid-State Supercapacitors. ACS Applied Energy Materials, 2020, 3, 5163-5172.	5.1	3