Yule Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4513424/publications.pdf

Version: 2024-02-01

		38720	22147
117	21,035	50	113
papers	citations	h-index	g-index
122	122	122	30030
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 4.3	0 Tf 50 662 To 1,430
4	Virus-induced gene silencing in tomato. Plant Journal, 2002, 31, 777-786.	2.8	1,357
5	Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant Journal, 2002, 30, 415-429.	2.8	901
6	Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response. Cell, 2005, 121, 567-577.	13.5	758
7	The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in <i>Arabidopsis</i> Å Â. Plant Cell, 2011, 23, 1000-1013.	3.1	502
8	Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination Journal of General Virology, 1997, 78, 2101-2111.	1.3	412
9	Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant Journal, 2003, 36, 905-917.	2.8	310
10	Role of SCF Ubiquitin-Ligase and the COP9 Signalosome in the N Gene–Mediated Resistance Response to Tobacco mosaic virus. Plant Cell, 2002, 14, 1483-1496.	3.1	306
11	Molecular Chaperone Hsp90 Associates with Resistance Protein N and Its Signaling Proteins SGT1 and Rar1 to Modulate an Innate Immune Response in Plants. Journal of Biological Chemistry, 2004, 279, 2101-2108.	1.6	299
12	Efficient Virus-Induced Gene Silencing in Arabidopsis. Plant Physiology, 2006, 142, 21-27.	2.3	297
13	Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1andCTR1inN-mediated resistance to tobacco mosaic virus. Plant Journal, 2004, 38, 800-809.	2.8	252
14	Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. Plant Cell, 2015, 27, 1634-1649.	3.1	247
15	The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis. Molecular Plant, 2011, 4, 279-288.	3.9	236
16	An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant Journal, 2005, 41, 767-778.	2.8	235
17	Structure-Function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance. PLoS Pathogens, 2012, 8, e1002752.	2.1	219
18	Autophagy Contributes to Leaf Starch Degradation Â. Plant Cell, 2013, 25, 1383-1399.	3.1	217

#	Article	IF	CITATIONS
19	Genome-Wide ORFeome Cloning and Analysis of Arabidopsis Transcription Factor Genes. Plant Physiology, 2004, 135, 773-782.	2.3	205
20	Chloroplast in Plant-Virus Interaction. Frontiers in Microbiology, 2016, 7, 1565.	1.5	205
21	Virus-Induced Gene Silencing., 2003, 236, 287-294.		186
22	A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Scientific Reports, 2015, 5, 14926.	1.6	179
23	A Ligation-Independent Cloning Tobacco Rattle Virus Vector for High-Throughput Virus-Induced Gene Silencing Identifies Roles for <i>NbMADS4</i> - <i>1</i>)and - <i>2</i>)in Floral Development. Plant Physiology, 2007, 145, 1161-1170.	2.3	177
24	Autophagy functions as an antiviral mechanism against geminiviruses in plants. ELife, 2017, 6, .	2.8	169
25	Cytoplastic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with ATG3 to Negatively Regulate Autophagy and Immunity in <i>Nicotiana benthamiana</i>). Plant Cell, 2015, 27, 1316-1331.	3.1	167
26	Role of a novel type of double infection in the geminivirusâ€induced epidemic of severe cassava mosaic in Uganda. Annals of Applied Biology, 1997, 131, 437-448.	1.3	154
27	Four DNA-A variants among Pakistani isolates of cotton leaf curl virus and their affinities to DNA-A of geminivirus isolates from okra Journal of General Virology, 1998, 79, 915-923.	1.3	148
28	The Mi-1-Mediated Pest Resistance Requires Hsp90 and Sgt1 Â. Plant Physiology, 2007, 144, 312-323.	2.3	142
29	Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Developmental Cell, 2018, 44, 348-361.e7.	3.1	121
30	Virus Induced Gene Silencing of a DEFICIENS Ortholog in Nicotiana Benthamiana. Plant Molecular Biology, 2004, 54, 701-711.	2.0	116
31	Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017, 27, 402-415.	5.7	115
32	<i>Barley stripe mosaic virus</i> \hat{l}^3 b Protein Subverts Autophagy to Promote Viral Infection by Disrupting the ATG7-ATG8 Interaction. Plant Cell, 2018, 30, 1582-1595.	3.1	114
33	Virus-Based MicroRNA Expression for Gene Functional Analysis in Plants Â. Plant Physiology, 2010, 153, 632-641.	2.3	108
34	Role of plant autophagy in stress response. Protein and Cell, 2011, 2, 784-791.	4.8	104
35	P58IPK, a Plant Ortholog of Double-Stranded RNA-Dependent Protein Kinase PKR Inhibitor, Functions in Viral Pathogenesis. Developmental Cell, 2003, 4, 651-661.	3.1	93
36	Cotton Leaf Curl Multan virus C4 protein suppresses both transcriptional and post-transcriptional gene silencing by interacting with SAM synthetase. PLoS Pathogens, 2018, 14, e1007282.	2.1	93

#	Article	IF	Citations
37	CLCuMuB \hat{I}^2 C1 Subverts Ubiquitination by Interacting with NbSKP1s to Enhance Geminivirus Infection in Nicotiana benthamiana. PLoS Pathogens, 2016, 12, e1005668.	2.1	93
38	The tobacco mosaic virus resistance gene, N. Molecular Plant Pathology, 2002, 3, 167-172.	2.0	92
39	The Rubisco Small Subunit Is Involved in Tobamovirus Movement and <i>Tm-22</i> -Mediated Extreme Resistance Â. Plant Physiology, 2012, 161, 374-383.	2.3	90
40	<i>Foxtail Mosaic Virus</i> -Induced Gene Silencing in Monocot Plants. Plant Physiology, 2016, 171, 1801-1807.	2.3	89
41	Mobile FT mRNA contributes to the systemic florigen signalling in floral induction. Scientific Reports, 2011, 1, 73.	1.6	88
42	Development of Agrobacterium-Mediated Virus-Induced Gene Silencing and Performance Evaluation of Four Marker Genes in Gossypium barbadense. PLoS ONE, 2013, 8, e73211.	1.1	79
43	Virus-Based MicroRNA Silencing in Plants. Plant Physiology, 2014, 164, 36-47.	2.3	78
44	Plant Bax Inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death. Autophagy, 2017, 13, 1161-1175.	4.3	76
45	Ribozyme-mediated high resistance against potato spindle tuber viroid in transgenic potatoes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4861-4865.	3.3	71
46	Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening. Scientific Reports, 2015, 5, 7852.	1.6	67
47	Detection and relationships of cotton leaf curl virus and allied whiteflyâ€transmitted geminiviruses occurring in Pakistan. Annals of Applied Biology, 1997, 130, 61-75.	1.3	64
48	Autophagy in Plant-Virus Interactions. Annual Review of Virology, 2020, 7, 403-419.	3.0	62
49	Antiviral Resistance Protein Tm-2 ² Functions on the Plasma Membrane. Plant Physiology, 2017, 173, 2399-2410.	2.3	59
50	Roles of Dicer-Like Proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing. Plant Physiology, 2017, 174, 1067-1081.	2.3	57
51	Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathology Research, 2019, 1, .	0.9	57
52	Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening. Scientific Reports, 2015, 5, 9192.	1.6	56
53	Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. ELife, $2018, 7, .$	2.8	56
54	Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3. New Phytologist, 2017, 213, 1330-1345.	3.5	55

#	Article	IF	CITATIONS
55	<i>Cotton leaf curl Multan virus $\langle l \rangle$ \hat{l}^2C1 Protein Induces Autophagy by Disrupting the Interaction of Autophagy-Related Protein 3 with Glyceraldehyde-3-Phosphate Dehydrogenases [OPEN]. Plant Cell, 2020, 32, 1124-1135.</i>	3.1	55
56	A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host and Microbe, 2021, 29, 1393-1406.e7.	5.1	54
57	Oneâ€step, zeroâ€background ligationâ€independent cloning intronâ€containing hairpin RNA constructs for RNAi in plants. New Phytologist, 2010, 187, 240-250.	3.5	50
58	The plant protein NbP3IP directs degradation of <i>Rice stripe virus</i> p3 silencing suppressor protein to limit virus infection through interaction with the autophagyâ€related protein NbATG8. New Phytologist, 2021, 229, 1036-1051.	3 . 5	49
59	Defective forms of cotton leaf curl virus DNA-A that have different combinations of sequence deletion, duplication, inversion and rearrangement Journal of General Virology, 1998, 79, 1501-1508.	1.3	48
60	Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy, 2015, 11, 2259-2274.	4.3	48
61	A Genetic Network for Systemic RNA Silencing in Plants. Plant Physiology, 2018, 176, 2700-2719.	2.3	47
62	Type I J-Domain NbMIP1 Proteins Are Required for Both Tobacco Mosaic Virus Infection and Plant Innate Immunity. PLoS Pathogens, 2013, 9, e1003659.	2.1	46
63	Role of autophagy during plant-virus interactions. Seminars in Cell and Developmental Biology, 2020, 101, 36-40.	2.3	44
64	PlantÂNLRÂimmune receptor Tm-22Âactivation requires NB-ARCÂdomain-mediated self-association of CC domain. PLoS Pathogens, 2020, 16, e1008475.	2.1	44
65	Plant ERD2â€like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Plant Journal, 2012, 72, 57-69.	2.8	43
66	<i>Cotton leaf curl Multan virus</i> newly reported to be associated with cotton leaf curl disease in China. Plant Pathology, 2010, 59, 794-795.	1.2	42
67	Tomato plant cell death induced by inhibition of <scp>HSP90</scp> is alleviated by <i><scp>T</scp>omato yellow leaf curl virus</i> infection. Molecular Plant Pathology, 2016, 17, 247-260.	2.0	42
68	Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis. Journal of Experimental Botany, 2013, 64, 599-612.	2.4	39
69	An efficient Potato virus X -based microRNA silencing in Nicotiana benthamiana. Scientific Reports, 2016, 6, 20573.	1.6	38
70	Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4. Journal of Virology, 2019, 93, .	1.5	38
71	High Resistance to Cucumber Mosaic Virus Conferred by Satellite RNA and Coat Protein in Transgenic Commercial Tobacco Cultivar G-140. Molecular Plant-Microbe Interactions, 1992, 5, 460.	1.4	38
72	Tm-22 Confers Different Resistance Responses against Tobacco mosaic virus Dependent on Its Expression Level. Molecular Plant, 2013, 6, 971-974.	3.9	33

#	Article	IF	Citations
73	Tomato yellow leaf curl China virus: monopartite genome organization and agroinfection of plants. Virus Research, 2001, 81, 69-76.	1.1	32
74	Isolation and identification of a super strong plant promoter from cotton leaf curl Multan virus. Plant Molecular Biology, 2003, 53, 1-14.	2.0	32
75	Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening. Scientific Reports, 2012, 2, 836.	1.6	32
76	Graphene Oxide Promoted Cadmium Uptake by Rice in Soil. ACS Sustainable Chemistry and Engineering, 2019, 7, 10283-10292.	3.2	29
77	Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers. Nano Research, 2018, 11, 6010-6022.	5.8	28
78	SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling. Biochemical and Biophysical Research Communications, 2013, 431, 501-505.	1.0	27
79	Involvement of RDR6 in short-range intercellular RNA silencing in Nicotiana benthamiana. Scientific Reports, 2012, 2, 467.	1.6	26
80	Hsp90 Interacts With Tm-22 and Is Essential for Tm-22-Mediated Resistance to Tobacco mosaic virus. Frontiers in Plant Science, 2018, 9, 411.	1.7	25
81	Autophagic degradation of leaf starch in plants. Autophagy, 2013, 9, 1247-1248.	4.3	24
82	Molecular and functional characterization of the SBP-box transcription factor SPL-CNR in tomato fruit ripening and cell death. Journal of Experimental Botany, 2020, 71, 2995-3011.	2.4	23
83	Actin filaments are dispensable for bulk autophagy in plants. Autophagy, 2019, 15, 2126-2141.	4.3	19
84	Autophagy in plant viral infection. FEBS Letters, 2022, 596, 2152-2162.	1.3	18
85	Improved apple latent spherical virus-induced gene silencing in multiple soybean genotypes through direct inoculation of agro-infiltrated Nicotiana benthamiana extract. Plant Methods, 2018, 14, 19.	1.9	16
86	Virusâ€induced gene silencing database for phenomics and functional genomics in <i>Nicotiana benthamiana</i>). Plant Direct, 2018, 2, e00055.	0.8	15
87	Diversity, structure and function of the coiledâ€coil domains of plant NLR immune receptors. Journal of Integrative Plant Biology, 2021, 63, 283-296.	4.1	15
88	Efficient and high-throughput pseudorecombinant-chimeric <i>Cucumber mosaic virus</i> based VIGS in maize. Plant Physiology, 2021, 187, 2865-2876.	2.3	15
89	A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. EMBO Journal, 2022, 41, e108713.	3.5	15
90	Influence of retinoblastoma-related gene silencing on the initiation of DNA replication by African cassava mosaic virus Rep in cells of mature leaves in Nicotiana benthamiana plants. Virology Journal, 2011, 8, 561.	1.4	14

#	Article	IF	CITATIONS
91	<i>METHYLTRANSFERASE1</i> and Ripening Modulate Vivipary during Tomato Fruit Development. Plant Physiology, 2020, 183, 1883-1897.	2.3	14
92	Chinese tomato yellow leaf curl virusâ€" a new species of geminivirus. Science in China Series C: Life Sciences, 1998, 41, 337-343.	1.3	13
93	Virus-Induced Gene Silencing Using Artificial miRNAs in Nicotiana benthamiana. Methods in Molecular Biology, 2013, 975, 99-107.	0.4	13
94	A Virus-Induced Assay for Functional Dissection and Analysis of Monocot and Dicot Flowering Time Genes. Plant Physiology, 2017, 174, 875-885.	2.3	11
95	Foxtail mosaic virus-induced flowering assays in monocot crops. Journal of Experimental Botany, 2020, 71, 3012-3023.	2.4	10
96	Virus-Induced Gene Silencing. Methods in Molecular Biology, 2013, , .	0.4	8
97	Plant ERD2s self-interact and interact with GTPase-activating proteins and ADP-ribosylation factor 1. Plant Signaling and Behavior, 2012, 7, 1092-1094.	1.2	7
98	Editorial: Plant Immunity against Viruses. Frontiers in Microbiology, 2017, 8, 520.	1.5	7
99	Plant G proteins interact with endoplasmic reticulum luminal protein receptors to regulate endoplasmic reticulum retrieval. Journal of Integrative Plant Biology, 2018, 60, 541-561.	4.1	7
100	The Involvement of HSP70 and HSP90 inTomato Yellow Leaf Curl Virus Infection in Tomato Plants and Insect Vectors. Heat Shock Proteins, 2016, , 189-207.	0.2	6
101	Examining Autophagy in Plant by Transmission Electron Microscopy (TEM). Bio-protocol, 2018, 8, e3047.	0.2	6
102	Linking calcium and RNAi signaling in plants. Trends in Plant Science, 2022, 27, 328-330.	4.3	6
103	Editorial: Protein Quality Controlling Systems in Plant Responses to Environmental Stresses. Frontiers in Plant Science, 2018, 9, 908.	1.7	5
104	Plant virus infection disrupts vacuolar acidification and autophagic degradation for the effective infection. Autophagy, 2022, 18, 705-706.	4.3	5
105	Functional links between microtubules, autophagy and leaf starch degradation in plants. Plant Signaling and Behavior, 2016, 11, e1201626.	1.2	3
106	Essential role of <i>NbNOG1</i> in ribosomal RNA processing. Journal of Integrative Plant Biology, 2018, 60, 1018-1022.	4.1	3
107	Plant protein P3IP participates in the regulation of autophagy in <i>Nicotiana benthamiana</i> Signaling and Behavior, 2021, 16, 1861768.	1.2	3
108	Use of Geminivirus for Delivery of CRISPR/Cas9 Components to Tobacco by Agro-infiltration. Bio-protocol, 2017, 7, e2209.	0.2	3

Yule Liu

#	Article	IF	CITATION
109	Discovery and demonstration of small circular DNA molecules derived from Chinese tomato yellow leaf curl virus. Science Bulletin, 2000, 45, 1417-1421.	1.7	2
110	Dimerization of p15RS mediated by a leucine zipper–like motif is critical for its inhibitory role on Wnt signaling. Journal of Biological Chemistry, 2018, 293, 7618-7628.	1.6	2
111	Virus-based MicroRNA Silencing. Bio-protocol, 2016, 6, .	0.2	2
112	Coat protein promoter from cotton leaf curl virus is not a tissue-specifically expressed promoter. Science Bulletin, 2000, 45, 1869-1874.	1.7	1
113	Live imaging and quantitation of insect feeding-induced Ca2+ signal using GCaMP3-based system in Nicotiana benthamiana. STAR Protocols, 2022, 3, 101040.	0.5	1
114	Linking Autophagy to Potential Agronomic Trait Improvement in Crops. International Journal of Molecular Sciences, 2022, 23, 4793.	1.8	1
115	Expression of human hepatitis C virus core antigen in tobacco plants by tobacco mosaic virus-based vector system. Science Bulletin, 2000, 45, 44-48.	1.7	O
116	There is the second virus that causes tobacco leaf curl disease (not TbLCV-CHI) in the field. Science Bulletin, 2000, 45, 1131-1137.	1.7	0
117	Molecular Mechanism of Plant Antiviral Defense. Scientia Sinica Vitae, 2014, 44, 999-1009.	0.1	0