
Umeharu Ohto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4512831/publications.pdf Version: 2024-02-01

ΠΜΕΗΛΡΙΙ ΟΗΤΟ

#	Article	IF	CITATIONS
1	The structure of NLRP9 reveals a unique Câ€ŧerminal region with putative regulatory function. FEBS Letters, 2022, 596, 876-885.	2.8	4
2	Structure of theÂbile acid transporterÂand HBV receptor NTCP. Nature, 2022, 606, 1021-1026.	27.8	45
3	Cryo-EM structures of Toll-like receptors in complex with UNC93B1. Nature Structural and Molecular Biology, 2021, 28, 173-180.	8.2	45
4	Improving particle quality in cryo-EM analysis using a PEGylation method. Structure, 2021, 29, 1192-1199.e4.	3.3	15
5	Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists. Nature Communications, 2021, 12, 4351.	12.8	12
6	Structural analysis reveals TLR7 dynamics underlying antagonism. Nature Communications, 2020, 11, 5204.	12.8	39
7	The effect of anesthetics on toll like receptor 9. FASEB Journal, 2020, 34, 14645-14654.	0.5	3
8	Crystal structure of TEX101, a glycoprotein essential for male fertility, reveals the presence of tandemly arranged Ly6/uPAR domains. FEBS Letters, 2020, 594, 3020-3031.	2.8	4
9	Rationally Designed Small-Molecule Inhibitors Targeting an Unconventional Pocket on the TLR8 Protein–Protein Interface. Journal of Medicinal Chemistry, 2020, 63, 4117-4132.	6.4	18
10	Small-molecule inhibition of TLR8 through stabilization of its resting state. Nature Chemical Biology, 2018, 14, 58-64.	8.0	97
11	Toll-like Receptor 9 Contains Two DNA Binding Sites that Function Cooperatively to Promote Receptor Dimerization and Activation. Immunity, 2018, 48, 649-658.e4.	14.3	94
12	Mechanisms controlling nucleic acid-sensing Toll-like receptors. International Immunology, 2018, 30, 43-51.	4.0	85
13	Structural Analyses of Toll-like Receptor 7 Reveal Detailed RNA Sequence Specificity and Recognition Mechanism of Agonistic Ligands. Cell Reports, 2018, 25, 3371-3381.e5.	6.4	98
14	Structural basis for speciesâ€specific activation of mouse Tollâ€like receptor 9. FEBS Letters, 2018, 592, 2636-2646.	2.8	12
15	Small-Molecule TLR8 Antagonists via Structure-Based Rational Design. Cell Chemical Biology, 2018, 25, 1286-1291.e3.	5.2	34
16	Emerging roles of the processing of nucleic acids and Toll-like receptors in innate immune responses to nucleic acids. Journal of Leukocyte Biology, 2017, 101, 135-142.	3.3	29
17	The crystal structure of the AhRR–ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription. Journal of Biological Chemistry, 2017, 292, 17609-17616.	3.4	41
18	Toward a structural understanding of nucleic acidâ€sensing Tollâ€like receptors in the innate immune system. FEBS Letters, 2017, 591, 3167-3181.	2.8	29

Umeharu Ohto

#	Article	IF	CITATIONS
19	Conservation and Divergence of Ligand Recognition and Signal Transduction Mechanisms in Toll-Like Receptors. Chemical and Pharmaceutical Bulletin, 2017, 65, 697-705.	1.3	11
20	Structural Analysis Reveals that Toll-like Receptor 7 Is a Dual Receptor for Guanosine and Single-Stranded RNA. Immunity, 2016, 45, 737-748.	14.3	321
21	Crystal structure of NOD2 and its implications in human disease. Nature Communications, 2016, 7, 11813.	12.8	135
22	Identification of a Human Toll-Like Receptor (TLR) 8-Specific Agonist and a Functional Pan-TLR Inhibitor in 2-Aminoimidazoles. Journal of Medicinal Chemistry, 2016, 59, 3311-3330.	6.4	33
23	Guanosine and its modified derivatives are endogenous ligands for TLR7. International Immunology, 2016, 28, 211-222.	4.0	97
24	Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature, 2015, 520, 702-705.	27.8	290
25	Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nature Communications, 2015, 6, 6119.	12.8	71
26	Toll-like receptor 8 senses degradation products of single-stranded RNA. Nature Structural and Molecular Biology, 2015, 22, 109-115.	8.2	312
27	DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nature Communications, 2015, 6, 5853.	12.8	107
28	Structure-Based Design of Human TLR8-Specific Agonists with Augmented Potency and Adjuvanticity. Journal of Medicinal Chemistry, 2015, 58, 7833-7849.	6.4	39
29	Structure and function of toll-like receptor 8. Microbes and Infection, 2014, 16, 273-282.	1.9	49
30	Structural Reorganization of the Toll-Like Receptor 8 Dimer Induced by Agonistic Ligands. Science, 2013, 339, 1426-1429.	12.6	288