
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4512575/publications.pdf Version: 2024-02-01

K D SANDEED

#	Article	IF	CITATIONS
1	Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials. Critical Reviews in Food Science and Nutrition, 2012, 52, 426-442.	5.4	379
2	Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Journal of Food Engineering, 2010, 100, 480-489.	2.7	247
3	Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric) Tj ETQq1 1 0.78	4314 rgBT 2.6	/Overlock 10 148
4	Overview of RFID Technology and Its Applications in the Food Industry. Journal of Food Science, 2009, 74, R101-6.	1.5	122
5	Effect of Type and Content of Modified Montmorillonite on the Structure and Properties of Bioâ€Nanocomposite Films Based on Soy Protein Isolate and Montmorillonite. Journal of Food Science, 2010, 75, N46-56.	1.5	98
6	Characterization of Aroma-Active Compounds in Microwave Blanched Peanuts. Journal of Food Science, 2006, 71, C513-C520.	1.5	60
7	Temperature Profiles Within Milk after Heating in a Continuous-flow Tubular Microwave System Operating at 915 MHz. Journal of Food Science, 2003, 68, 1976-1981.	1.5	55
8	A Review of Experimental and Modeling Techniques to Determine Properties of Biopolymerâ€Based Nanocomposites. Journal of Food Science, 2011, 76, E2-14.	1.5	51
9	Continuous Flow Microwaveâ€Assisted Processing and Aseptic Packaging of Purpleâ€Fleshed Sweetpotato Purees. Journal of Food Science, 2008, 73, E455-62.	1.5	43
10	Overcoming issues associated with the scale-up of a continuous flow microwave system for aseptic processing of vegetable purees. Food Research International, 2008, 41, 454-461.	2.9	43
11	Sterilization solutions for aseptic processing using a continuous flow microwave system. Journal of Food Engineering, 2008, 85, 528-536.	2.7	40
12	Dielectric Properties of Pumpable Food Materials at 915 MHz. International Journal of Food Properties, 2008, 11, 508-518.	1.3	35
13	Numerical simulation of forced convection in a duct subjected to microwave heating. Heat and Mass Transfer, 2006, 43, 255-264.	1.2	34
14	Dielectric Properties of Sweet Potato Purees at 915 MHz as Affected by Temperature and Chemical Compositiona^—. International Journal of Food Properties, 2008, 11, 158-172.	1.3	31
15	Continuous flow radio frequency heating of particulate foods. Innovative Food Science and Emerging Technologies, 2004, 5, 475-483.	2.7	29
16	Residence times of multiple particles in non-newtonian holding tube flow: Effect of process parameters and development of dimensionless correlations. Journal of Food Engineering, 1995, 25, 31-44.	2.7	27
17	Measurement of Dielectric Properties of Pumpable Food Materials under Static and Continuous Flow Conditions. Journal of Food Science, 2007, 72, E177-E183.	1.5	27
18	IMPACT OF MICROWAVE BLANCHING ON THE FLAVOR OF ROASTED PEANUTS. Journal of Sensory Studies, 2006, 21, 428-440.	0.8	26

#	Article	IF	CITATIONS
19	Feasibility of Aseptic Processing of a Low-Acid Multiphase Food Product (salsa con queso) Using a Continuous Flow Microwave System. Journal of Food Science, 2007, 72, E121-E124.	1.5	24
20	Continuous Flow Radio Frequency Heating of Water and Carboxymethylcellulose Solutions. Journal of Food Science, 2003, 68, 217-223.	1.5	23
21	Quantifying the Significance of Phage Attack on Starter Cultures: a Mechanistic Model for Population Dynamics of Phage and Their Hosts Isolated from Fermenting Sauerkraut. Applied and Environmental Microbiology, 2006, 72, 3908-3915.	1.4	23
22	Characterization of peanuts after dry roasting, oil roasting, and blister frying. LWT - Food Science and Technology, 2017, 75, 520-528.	2.5	23
23	OVERALL HEAT TRANSFER COEFFICIENTS AND AXIAL TEMPERATURE DISTRIBUTION IN A TRIPLE TUBE HEAT EXCHANGER. Journal of Food Process Engineering, 2008, 31, 260-279.	1.5	21
24	RHEOLOGICAL CHARACTERIZATION OF CARBOXYMETHYLCELLULOSE SOLUTION UNDER ASEPTIC PROCESSING CONDITIONS. Journal of Food Process Engineering, 2002, 25, 41-61.	1.5	19
25	Effect of tube curvature ratio on the residence time distribution of multiple particles in helical tubes. LWT - Food Science and Technology, 2004, 37, 387-393.	2.5	17
26	Numerical Modeling of a Moving Particle in a Continuous Flow Subjected to Microwave Heating. Numerical Heat Transfer; Part A: Applications, 2007, 52, 417-439.	1.2	16
27	Feasibility of Utilizing Bioindicators for Testing Microbial Inactivation in Sweetpotato Purees Processed with a Continuous-Flow Microwave System. Journal of Food Science, 2007, 72, E235-E242.	1.5	16
28	Integration of ResonantAcoustic® mixing into thermal processing of foods: A comparison study against other in-container sterilization technologies. Journal of Food Engineering, 2015, 165, 124-132.	2.7	16
29	Residence Time Distribution of Multiple Particles in Non-Newtonian Holding Tube Flow: Statistical Analysis. Journal of Food Science, 1994, 59, 1314-1317.	1.5	15
30	Thermophysical and Dielectric Properties of <i>Salsa Con Queso</i> and its Vegetable Ingredients at Sterilization Temperatures. International Journal of Food Properties, 2008, 11, 112-126.	1.3	15
31	Residence Time Distribution of Particles during Two-Phase Non-Newtonian Flow in Conventional as compared with Helical Holding Tubes. Journal of Food Science, 1997, 62, 647-652.	1.5	14
32	Modelling non-Newtonian two-phase flow in conventional and helical-holding tubes. International Journal of Food Science and Technology, 2000, 35, 511-522.	1.3	13
33	EFFECT OF PROCESSING PARAMETERS ON THE TEMPERATURE AND MOISTURE CONTENT OF MICROWAVE-BLANCHED PEANUTS. Journal of Food Process Engineering, 2007, 30, 225-240.	1.5	13
34	The effects of different dry roast parameters on peanut quality using an industrial belt-type roaster simulator. Food Chemistry, 2018, 240, 974-979.	4.2	13
35	Investigation of a particulate flow containing spherical particles subjected to microwave heating. Heat and Mass Transfer, 2008, 44, 481-493.	1.2	12
36	Assessment of the Effect of Fluid-to-particle Heat Transfer Coefficient on Microbial and Nutrient Destruction during Aseptic Processing of Particulate Food. Journal of Food Science, 2002, 67, 3359-3364.	1.5	10

#	Article	IF	CITATIONS
37	Determination of Lethality During Aseptic Processing of Particulate Foods. Food and Bioproducts Processing, 1999, 77, 11-17.	1.8	9
38	Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plantâ€Đerived, Lowâ€Acid Foods, and Biomaterials. Journal of Food Science, 2015, 80, M1804-14.	1.5	7
39	Secondary Flow and Residence Time Distribution in Food Processing Holding Tubes with Bends. Journal of Food Science, 1999, 64, 941-945.	1.5	6
40	Design of Conservative Simulated Particles for Validation of a Multiphase Aseptic Process. Journal of Food Science, 2008, 73, E193-201.	1.5	6
41	Kinetics of color development of peanuts during dry roasting using a batch roaster. Journal of Food Process Engineering, 2017, 40, e12498.	1.5	6
42	PRESSURE DROP and FRICTION FACTOR IN HELICAL HEAT EXCHANGERS UNDER NONISOTHERMAL and TURBULENT FLOW CONDITIONS. Journal of Food Process Engineering, 2003, 26, 285-302.	1.5	5
43	Compression Heating of Selected Polymers During Highâ€Pressure Processing. Journal of Food Process Engineering, 2017, 40, e12417.	1.5	5
44	COMPUTATIONAL FLUID DYNAMICS MODELING OF FLUID FLOW IN HELICAL TUBES. Journal of Food Process Engineering, 2002, 25, 141-158.	1.5	4
45	EFFECT OF HOLDING TUBE CONFIGURATION ON THE RESIDENCE TIME DISTRIBUTION OF MULTIPLE PARTICLES IN HELICAL TUBE FLOW. Journal of Food Process Engineering, 2002, 25, 337-350.	1.5	4
46	Calculation of overall heat transfer coefficients in a triple tube heat exchanger. Heat and Mass Transfer, 2004, -1, 1-1.	1.2	4
47	Investigation of impeller modification and eccentricity for non-Newtonian fluid mixing in stirred vessels. Chemical Engineering Communications, 2019, 206, 318-332.	1.5	4
48	DRAG ON MULTIPLE SPHERE ASSEMBLIES SUSPENDED IN NON-NEWTONIAN TUBE FLOW. Journal of Food Process Engineering, 1996, 19, 171-183.	1.5	3
49	Developments in aseptic processing. , 2004, , 177-187.		3
50	Mathematical modelling of two-phase non-Newtonian flow in a helical pipe. International Journal for Numerical Methods in Fluids, 2005, 48, 649-670.	0.9	3
51	Viability of microwave technology for accelerated cold brew coffee processing vs conventional brewing methods. Journal of Food Engineering, 2022, 317, 110866.	2.7	3
52	USE OF ABLATION TO DETERMINE THE CONVECTIVE HEAT TRANSFER COEFFICIENT IN TWO-PHASE FLOW. Journal of Food Process Engineering, 2001, 24, 315-330.	1.5	2
53	Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plantâ€Đerived Foods. Journal of Food Science, 2015, 80, M2892-8.	1.5	2
54	Enhancement of continuous flow cooling using hydrophobic surface treatment. Journal of Food Engineering, 2021, 300, 110524.	2.7	2

#	Article	IF	CITATIONS
55	Winterization strategies for bulk storage of cucumber pickles. Journal of Food Engineering, 2017, 212, 12-17.	2.7	1
56	Scale-Up of Shear Thinning Fluid Mixing in an Unbaffled Stirred Vessel with Eccentrically Located and Modified Impellers. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	1
57	Key technological advances and industrialization of continuous flow microwave processing for foods and beverages. , 2022, , 149-162.		1
58	Elements, Modes, Techniques, and Design of Process Control for Thermal Processes. , 2011, , 7-35.		0
59	Process Control of Retorts. , 2011, , 37-54.		Ο
60	Extrusion of Foods. , 2010, , 795-828.		0