
Gao-Feng Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/451237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unveiling the critical role of active site interaction in single atom catalyst towards hydrogen evolution catalysis. Nano Energy, 2022, 93, 106819.	8.2	19
2	Abrading bulk metal into single atoms. Nature Nanotechnology, 2022, 17, 403-407.	15.6	102
3	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie, 2022, 134, .	1.6	1
4	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
5	Solution-Processable Semiconducting Conjugated Planar Network. ACS Applied Materials & Interfaces, 2022, 14, 14588-14595.	4.0	Ο
6	Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure–Performance Relationship Discovery. Accounts of Chemical Research, 2022, 55, 110-120.	7.6	7
7	Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.	15.6	141
8	Active Site Engineering in Transition Metal Based Electrocatalysts for Green Energy Applications. Accounts of Materials Research, 2021, 2, 147-158.	5.9	11
9	Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. ACS Nano, 2021, 15, 11891-11897.	7.3	27
10	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 33, e2103266.	11.1	104
11	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production (Adv. Mater. 49/2021). Advanced Materials, 2021, 33, .	11.1	3
12	Revealing Isolated Mâ^'N ₃ C ₁ Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 23678-23683.	7.2	64
13	Revealing Isolated Mâ^'N 3 C 1 Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie, 2020, 132, 23886-23891.	1.6	9
14	Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nature Communications, 2020, 11, 2209.	5.8	281
15	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	4.7	9
16	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10, 4060.	5.8	131
17	Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. Nano Energy, 2019, 66, 104112.	8.2	13
18	Identifying the structure of Zn-N2 active sites and structural activation. Nature Communications, 2019, 10, 2623	5.8	79

GAO-FENG HAN

#	Article	IF	CITATIONS
19	Oxidative Dehydrogenation of Ethylbenzene into Styrene by Fe-Graphitic Catalysts. ACS Nano, 2019, 13, 5893-5899.	7.3	26
20	Lowâ€Temperature Conversion of Alcohols into Bulky Nanoporous Graphene and Pure Hydrogen with Robust Selectivity on CaO. Advanced Materials, 2019, 31, e1807267.	11.1	22
21	Defect-Free Encapsulation of Fe ⁰ in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2018, 140, 1737-1742.	6.6	124
22	Hydrogen Evolution Reaction: Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media (Adv. Mater. 44/2018). Advanced Materials, 2018, 30, 1870330.	11.1	21
23	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	11.1	173
24	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie, 2018, 130, 14335-14339.	1.6	58
25	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14139-14143.	7.2	70
26	Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy and Environmental Science, 2018, 11, 2263-2269.	15.6	405
27	Electrocatalysis: Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst (Small 40/2017). Small, 2017, 13, .	5.2	1
28	Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. Small, 2017, 13, 1701167.	5.2	82
29	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	7.3	102
30	Facile Synthesis of Non-Graphitizable Polypyrrole-Derived Carbon/Carbon Nanotubes for Lithium-ion Batteries. Scientific Reports, 2016, 6, 19317.	1.6	52
31	Narrowâ€Gap Quantum Wires Arising from the Edges of Monolayer MoS ₂ Synthesized on Graphene. Advanced Materials Interfaces, 2016, 3, 1600332.	1.9	30
32	Scalable Nanoporous (Pt _{1–<i>x</i>} Ni _{<i>x</i>}) ₃ Al Intermetallic Compounds as Highly Active and Stable Catalysts for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2016, 8, 32910-32917.	4.0	29
33	Nanoporous (Pt _{1â^'x} Fe _x 3Al intermetallic compounds for greatly enhanced oxygen electroreduction catalysis. Journal of Materials Chemistry A, 2016, 4, 18878-18884.	5.2	19
34	Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Research, 2015, 8, 2881-2890.	5.8	91
35	Mesostructured Intermetallic Compounds of Platinum and Nonâ€Transition Metals for Enhanced Electrocatalysis of Oxygen Reduction Reaction. Advanced Functional Materials, 2015, 25, 230-237.	7.8	127
36	Dendritic, Transferable, Strictly Monolayer MoS ₂ Flakes Synthesized on SrTiO ₃ Single Crystals for Efficient Electrocatalytic Applications. ACS Nano, 2014, 8, 8617-8624.	7.3	158

GAO-FENG HAN

#	Article	IF	CITATIONS
37	Self-Grown Ni(OH) ₂ Layer on Bimodal Nanoporous AuNi Alloys for Enhanced Electrocatalytic Activity and Stability. ACS Applied Materials & Interfaces, 2014, 6, 16966-16973.	4.0	23
38	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	7.3	404
39	Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nature Communications, 2013, 4, 2169.	5.8	261
40	Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries. Scientific Reports, 2013, 3, 2878.	1.6	53