
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4512329/publications.pdf Version: 2024-02-01

ΔΜΑΝΠΑ Ι ΡΟΓΤΜΑΝ

#	Article	IF	CITATIONS
1	Earlyâ€life seasonal, weather and social effects on telomere length in a wild mammal. Molecular Ecology, 2022, 31, 5993-6007.	2.0	15
2	PDZD8 Disruption Causes Cognitive Impairment in Humans, Mice, and Fruit Flies. Biological Psychiatry, 2022, 92, 323-334.	0.7	14
3	Female fruit flies cannot protect stored sperm from high temperature damage. Journal of Thermal Biology, 2022, 105, 103209.	1.1	5
4	Friends, neighbours and enemies: an overview of the communal and social biology of plants. Plant, Cell and Environment, 2021, 44, 997-1013.	2.8	46
5	Estimation of environmental, genetic and parental age at conception effects on telomere length in a wild mammal. Journal of Evolutionary Biology, 2021, 34, 296-308.	0.8	21
6	Plastic male mating behavior evolves in response to the competitive environment*. Evolution; International Journal of Organic Evolution, 2021, 75, 101-115.	1.1	13
7	Temperatures that sterilize males better match global species distributions than lethal temperatures. Nature Climate Change, 2021, 11, 481-484.	8.1	75
8	Social environment drives sex and ageâ€specific variation in <i>Drosophila melanogaster</i> microbiome composition and predicted function. Molecular Ecology, 2021, 30, 5831-5843.	2.0	5
9	Development of a multiplex microsatellite marker set for the study of the solitary red mason bee, Osmia bicornis (Megachilidae). Molecular Biology Reports, 2021, , 1.	1.0	1
10	Plastic responses of survival and fertility following heat stress in pupal and adult <i>Drosophila virilis</i> . Ecology and Evolution, 2021, 11, 18238-18247.	0.8	12
11	Social competition stimulates cognitive performance in a sex-specific manner. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201424.	1.2	4
12	Fitness consequences of redundant cues of competition in male <i>Drosophila melanogaster</i> . Ecology and Evolution, 2020, 10, 5517-5526.	0.8	7
13	Interactive effects of social environment, age and sex on immune responses in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2019, 32, 1082-1092.	0.8	23
14	Divergent allocation of sperm and the seminal proteome along a competition gradient in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17925-17933.	3.3	76
15	Individual variation in earlyâ€life telomere length and survival in a wild mammal. Molecular Ecology, 2019, 28, 4152-4165.	2.0	54
16	Social Cues of Future Sperm Competition Received during Development Affect Learning in Adult Male Fruit Flies, Drosophila melanogaster. Journal of Insect Behavior, 2019, 32, 47-58.	0.4	5
17	Integrated Approaches to Studying Male and Female Thermal Fertility Limits. Trends in Ecology and Evolution, 2019, 34, 492-493.	4.2	16
18	Exposure to males, but not receipt of sex peptide, accelerates functional ageing in female fruit flies. Functional Ecology, 2019, 33, 1459-1468.	1.7	12

#	Article	IF	CITATIONS
19	The Impact of Climate Change on Fertility. Trends in Ecology and Evolution, 2019, 34, 249-259.	4.2	188
20	Flexible memory controls sperm competition responses in male <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180619.	1.2	19
21	The role of complex cues in social and reproductive plasticity. Behavioral Ecology and Sociobiology, 2018, 72, 124.	0.6	30
22	Genomic responses to the socio-sexual environment in male <i>Drosophila melanogaster</i> exposed to conspecific rivals. Rna, 2017, 23, 1048-1059.	1.6	47
23	The role of speciesâ€specific sensory cues in male responses to mating rivals in <i>Drosophila melanogaster</i> fruitflies. Ecology and Evolution, 2017, 7, 9247-9256.	0.8	16
24	Sex-specific effects of social isolation on ageing in Drosophila melanogaster. Journal of Insect Physiology, 2017, 102, 12-17.	0.9	30
25	Comparison of alternative approaches for analysing multi-level RNA-seq data. PLoS ONE, 2017, 12, e0182694.	1.1	25
26	Exposure time to rivals and sensory cues affect how quickly males respond to changes in sperm competition threat. Animal Behaviour, 2016, 122, 1-8.	0.8	27
27	Effect of competitive cues on reproductive morphology and behavioral plasticity in male fruitflies. Behavioral Ecology, 2016, 27, 452-461.	1.0	28
28	The Heritability of Mating Behaviour in a Fly and Its Plasticity in Response to the Threat of Sperm Competition. PLoS ONE, 2014, 9, e90236.	1.1	10
29	Does polyandry control population sex ratio via regulation of a selfish gene?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133259.	1.2	42
30	COSTS AND BENEFITS OF LIFETIME EXPOSURE TO MATING RIVALS IN MALEDROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2013, 67, 2413-2422.	1.1	73
31	Multiple postâ€mating barriers to hybridization in field crickets. Molecular Ecology, 2013, 22, 1640-1649.	2.0	45
32	Male control of mating duration following exposure to rivals in fruitflies. Journal of Insect Physiology, 2013, 59, 824-827.	0.9	48
33	Individual plastic responses by males to rivals reveal mismatches between behaviour and fitness outcomes. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2868-2876.	1.2	45
34	Experience of mating rivals causes males to modulate sperm transfer in the fly Drosophila pseudoobscura. Journal of Insect Physiology, 2012, 58, 1669-1675.	0.9	47
35	Quick-change artists: male plastic behavioural responses to rivals. Trends in Ecology and Evolution, 2011, 26, 467-473.	4.2	171
36	DDT resistance, epistasis and male fitness in flies. Journal of Evolutionary Biology, 2011, 24, 1351-1362.	0.8	35

#	Article	IF	CITATIONS
37	Fineâ€scale population structure, inbreeding risk and avoidance in a wild insect population. Molecular Ecology, 2011, 20, 3045-3055.	2.0	37
38	Males Use Multiple, Redundant Cues to Detect Mating Rivals. Current Biology, 2011, 21, 617-622.	1.8	97
39	Guarding Males Protect Females from Predation in a Wild Insect. Current Biology, 2011, 21, 1716-1719.	1.8	69
40	Metabolic rate does not decrease with starvation in <i>Gryllus bimaculatus</i> when changing fuel use is taken into account. Physiological Entomology, 2011, 36, 84-89.	0.6	44
41	A mating plug protein reduces early female remating in Drosophila melanogaster. Journal of Insect Physiology, 2010, 56, 107-113.	0.9	61
42	SPERM COMPETITIVE ABILITY AND INDICES OF LIFETIME REPRODUCTIVE SUCCESS. Evolution; International Journal of Organic Evolution, 2010, 64, 2746-2757.	1.1	34
43	Female nutritional status determines the magnitude and sign of responses to a male ejaculate signal in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2010, 23, 157-165.	0.8	84
44	Exposure to rivals and plastic responses to sperm competition in Drosophila melanogaster. Behavioral Ecology, 2010, 21, 317-321.	1.0	104
45	Natural and Sexual Selection in a Wild Insect Population. Science, 2010, 328, 1269-1272.	6.0	188
46	Plastic responses of male <i>Drosophila melanogaster</i> to the level of sperm competition increase male reproductive fitness. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1705-1711.	1.2	212
47	Seminal Fluid Protein Allocation and Male Reproductive Success. Current Biology, 2009, 19, 751-757.	1.8	309
48	Promiscuous females avoid inbreeding by controlling sperm storage. Molecular Ecology, 2009, 18, 3340-3345.	2.0	118
49	Sexual selection in the cricket Gryllus bimaculatus: no good genes?. Genetica, 2008, 132, 287-294.	0.5	8
50	Sexual selection in the cricket Gryllus bimaculatus: no good genes?. Genetica, 2008, 134, 129-136.	0.5	8
51	SEX RATIO DISTORTER REDUCES SPERM COMPETITIVE ABILITY IN AN INSECT. Evolution; International Journal of Organic Evolution, 2008, 62, 1644-1652.	1.1	63
52	ADULT MALE NUTRITION AND REPRODUCTIVE SUCCESS IN <i>DROSOPHILA MELANOGASTER </i> . Evolution; International Journal of Organic Evolution, 2008, 62, 3170-3177.	1.1	108
53	New microsatellite loci isolated from the field cricket <i>Gryllus bimaculatus</i> characterized in two cricket species, <i>Gryllus bimaculatus</i> and <i>Gryllus campestris</i> . Molecular Ecology Resources, 2008, 8, 1015-1019.	2.2	9
54	Strong, silent types: the rapid, adaptive disappearance of a sexual signal. Trends in Ecology and Evolution, 2007, 22, 226-228.	4.2	2

#	Article	IF	CITATIONS
55	Male dominance determines female egg laying rate in crickets. Biology Letters, 2006, 2, 409-411.	1.0	40
56	Measuring polyandry in wild populations: a case study using promiscuous crickets. Molecular Ecology, 2005, 14, 2169-2179.	2.0	123
57	Molecular evidence of post–copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 159-164.	1.2	130
58	Microsatellite loci for the field cricket, Gryllus bimaculatus and their cross-utility in other species of Orthoptera. Molecular Ecology Notes, 2003, 3, 191-195.	1.7	17
59	Bone Preservation and Ancient DNA: The Application of Screening Methods for Predicting DNA Survival. Journal of Archaeological Science, 2002, 29, 585-592.	1.2	71