
Jörn Oliver Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4512031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES Journal of Marine Science, 2015, 72, 2180-2186.	2.5	129
2	Recruitment in a changing environment: the 2000s North Sea herring recruitment failure. ICES Journal of Marine Science, 2009, 66, 272-277.	2.5	104
3	Securing blue wealth: The need for a special sustainable development goal for the ocean and coasts. Marine Policy, 2014, 48, 184-191.	3.2	93
4	Implementing ecosystem-based fisheries management: from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES Journal of Marine Science, 2014, 71, 1187-1197.	2.5	92
5	Integrated ecological–economic fisheries models—Evaluation, review and challenges for implementation. Fish and Fisheries, 2018, 19, 1-29.	5.3	87
6	The Tropical Atlantic Observing System. Frontiers in Marine Science, 2019, 6, .	2.5	80
7	Optimal Harvesting of an Age-Structured Schooling Fishery. Environmental and Resource Economics, 2013, 54, 21-39.	3.2	68
8	Indicators for monitoring sustainable development goals: An application to oceanic development in the European Union. Earth's Future, 2016, 4, 252-267.	6.3	55
9	Assessing Social – Ecological Trade-Offs to Advance Ecosystem-Based Fisheries Management. PLoS ONE, 2014, 9, e107811.	2.5	50
10	Profitability and economic drivers of small pelagic fisheries in West Africa: A twenty year perspective. Marine Policy, 2017, 76, 152-158.	3.2	46
11	Tipping point realized in cod fishery. Scientific Reports, 2021, 11, 14259.	3.3	46
12	International perceptions of an integrated, multi-sectoral, ecosystem approach to management. ICES Journal of Marine Science, 2017, 74, 414-420.	2.5	45
13	Invading Mnemiopsis leidyi as a potential threat to Baltic fish. Marine Ecology - Progress Series, 2007, 349, 303-306.	1.9	45
14	Dependency of larval fish survival on retention/dispersion in food limited environments: the Baltic Sea as a case study. Fisheries Oceanography, 2003, 12, 425-433.	1.7	44
15	Recolonisation of spawning grounds in a recovering fish stock: recent changes in North Sea herring. Scientia Marina, 2009, 73, 153-157.	0.6	40
16	Keeping Humans in the Ecosystem. ICES Journal of Marine Science, 2017, 74, 1947-1956.	2.5	37
17	Regional trade-offs from multi-species maximum sustainable yield (MMSY) management options. Marine Ecology - Progress Series, 2014, 498, 1-12.	1.9	37
18	A Sustainable Development Goal for the Ocean and Coasts: Global ocean challenges benefit from regional initiatives supporting globally coordinated solutions. Marine Policy, 2014, 49, 87-89.	3.2	29

JöRN OLIVER SCHMIDT

#	Article	IF	CITATIONS
19	Attending to spatial social–ecological sensitivities to improve tradeâ€off analysis in natural resource management. Fish and Fisheries, 2020, 21, 1-12.	5.3	29
20	Temperature change and Baltic sprat: from observations to ecological-economic modelling. ICES Journal of Marine Science, 2011, 68, 1244-1256.	2.5	28
21	Fishing industry borrows from natural capital at high shadow interest rates. Ecological Economics, 2012, 82, 45-52.	5.7	28
22	Feeding ecology of sprat (Sprattus sprattus L) and sardine (Sardina pilchardus W.) larvae in the German Bight, North Sea. Oceanologia, 2009, 51, 117-138.	2.2	28
23	The invasive ctenophore Mnemiopsis leidyi in the central Baltic Sea: seasonal phenology and hydrographic influence on spatio-temporal distribution patterns. Journal of Plankton Research, 2011, 33, 1053-1065.	1.8	27
24	A heuristic model of socially learned migration behaviour exhibits distinctive spatial and reproductive dynamics. ICES Journal of Marine Science, 2019, 76, 598-608.	2.5	27
25	Spatial and temporal habitat partitioning by zooplankton in the Bornholm Basin (central Baltic Sea). Progress in Oceanography, 2012, 107, 3-30.	3.2	26
26	It is the economy, stupid! Projecting the fate of fish populations using ecological–economic modeling. Global Change Biology, 2016, 22, 264-270.	9.5	26
27	Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification. Journal of Environmental Management, 2019, 238, 110-118.	7.8	26
28	Recruitment processes in Baltic sprat – A re-evaluation of GLOBEC Germany hypotheses. Progress in Oceanography, 2012, 107, 61-79.	3.2	24
29	Future Ocean Observations to Connect Climate, Fisheries and Marine Ecosystems. Frontiers in Marine Science, 2019, 6, .	2.5	24
30	Vertical distribution of Baltic sprat larvae: changes in patterns of diel migration?. ICES Journal of Marine Science, 2007, 64, 956-962.	2.5	23
31	The haemoflagellate Trypanoplasma borreli induces the production of nitric oxide, which is associated with modulation of carp (Cyprinus carpio L.) leucocyte functions. Fish and Shellfish Immunology, 2003, 14, 207-222.	3.6	22
32	When are estimates of spawning stock biomass for small pelagic fishes improved by taking spatial structure into account?. Fisheries Research, 2018, 206, 65-78.	1.7	22
33	Head kidney neutrophils of carp (Cyprinus carpio L.) are functionally modulated by the haemoflagellateTrypanoplasma borreli. Fish and Shellfish Immunology, 2003, 14, 389-403.	3.6	21
34	Egg mortality: predation and hydrography in the central Baltic. ICES Journal of Marine Science, 2011, 68, 1379-1390.	2.5	21
35	Does the European Union achieve comprehensive blue growth? Progress of EU coastal states in the Baltic and North Sea, and the Atlantic Ocean against sustainable development goal 14. Marine Policy, 2019, 106, 103515.	3.2	21
36	Enhanced monitoring of life in the sea is a critical component of conservation management and sustainable economic growth. Marine Policy, 2021, 132, 104699.	3.2	21

JöRN OLIVER SCHMIDT

#	Article	IF	CITATIONS
37	Investigating the selective survival of summer- over spring-born sprat, Sprattus sprattus, in the Baltic Sea. Fisheries Research, 2008, 91, 1-14.	1.7	20
38	Survival probability of Baltic larval cod in relation to spatial overlap patterns with their prey obtained from drift model studies. ICES Journal of Marine Science, 2005, 62, 878-885.	2.5	19
39	Spatio-temporal overlap of the alien invasive ctenophore Mnemiopsis leidyi and ichthyoplankton in the Bornholm Basin (Baltic Sea). Biological Invasions, 2011, 13, 2647-2660.	2.4	19
40	Effects of climate-induced habitat changes on a key zooplankton species. Journal of Plankton Research, 2015, 37, 530-541.	1.8	18
41	Survival probability of larval sprat in response to decadal changes in diel vertical migration behavior and prey abundance in the Baltic Sea. Limnology and Oceanography, 2010, 55, 1485-1498.	3.1	16
42	Managing marine socio-ecological systems: picturing the future. ICES Journal of Marine Science, 2017, 74, 1965-1980.	2.5	14
43	Ecological-Economic Fisheries Management Advice—Quantification of Potential Benefits for the Case of the Eastern Baltic COD Fishery. Frontiers in Marine Science, 2017, 4, .	2.5	14
44	The spatial dimension of climate-driven temperature change in the Baltic Sea and its implication for cod and sprat early life stage survival. Journal of Marine Systems, 2012, 100-101, 1-8.	2.1	10
45	Assessing the contribution of artisanal fisheries to food security: A bio-economic modeling approach. Food Policy, 2019, 87, 101740.	6.0	10
46	Vertically resolved prey selectivity and competition of Baltic herring Clupea harengus and sprat Sprattus sprattus. Marine Ecology - Progress Series, 2013, 489, 177-195.	1.9	10
47	Ocean Acidification May Aggravate Social-Ecological Trade-Offs in Coastal Fisheries. PLoS ONE, 2015, 10, e0120376.	2.5	9
48	The potential impact of marine protected areas on the Senegalese sardinella fishery. Ocean and Coastal Management, 2019, 169, 239-246.	4.4	9
49	Climate change adaptation and the role of fuel subsidies: An empirical bio-economic modeling study for an artisanal open-access fishery. PLoS ONE, 2019, 14, e0220433.	2.5	8
50	The development and use of a spatial database for the determination and characterization of the state of the German Baltic small-scale fishery sector. ICES Journal of Marine Science, 2012, 69, 1480-1490.	2.5	7
51	Using indicators based on primary fisheries' data for assessing the development of the German Baltic small-scale fishery and reviewing its adaptation potential to changes in resource abundance and management during 2000–09. Ocean and Coastal Management, 2014, 98, 38-50.	4.4	6
52	Social networks and seafood sustainability governance: Exploring the relationship between social capital and the performance of fishery improvement projects. People and Nature, 2020, 2, 797-810.	3.7	6
53	Quantifying the benefits of spatial fisheries management – An ecological-economic optimization approach. Ecological Modelling, 2018, 385, 165-172.	2.5	5
54	Transferring Complex Scientific Knowledge to Useable Products for Society: The Role of the Global Integrated Ocean Assessment and Challenges in the Effective Delivery of Ocean Knowledge. Frontiers in Environmental Science, 2021, 9, .	3.3	5

#	Article	IF	CITATIONS
55	Social–Ecological Trade-Offs in Baltic Sea Fisheries Management. , 2017, , 359-377.		4
56	Expanding ocean observation and climate services to build resilience in West African fisheries. One Earth, 2021, 4, 1062-1065.	6.8	2
57	Predation risk triggers copepod small-scale behavior in the Baltic Sea. Journal of Plankton Research, 2020, 42, 702-713.	1.8	1
58	Senegalese Artisanal Fishers in the Apprehension of Changes of the Marine Environment: An Universal Knowledge?. SSRN Electronic Journal, 0, , .	0.4	1