Neal S Peachey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4511598/publications.pdf

Version: 2024-02-01

		36303	40979
180	10,575	51	93
papers	citations	h-index	g-index
187	187	187	10962
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction. International Journal of Molecular Sciences, 2022, 23, 2220.	4.1	4
2	Genetic loss of function of Ptbp1 does not induce glia-to-neuron conversion in retina. Cell Reports, 2022, 39, 110849.	6.4	39
3	Visual imaging as a predictor of neurodegeneration in experimental autoimmune demyelination and multiple sclerosis. Acta Neuropathologica Communications, 2022, 10, .	5.2	5
4	Glucose uptake by <scp>GLUT1</scp> in photoreceptors is essential for outer segment renewal and rod photoreceptor survival. FASEB Journal, 2022, 36, .	0.5	6
5	An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease. JCI Insight, 2021, 6, .	5.0	10
6	Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular Degeneration. JAMA Ophthalmology, 2021, 139, 1299.	2.5	29
7	Role of monocarboxylate transporters in regulating metabolic homeostasis in the outer retina: Insight gained from cellâ€specific <i>Bsg</i> deletion. FASEB Journal, 2020, 34, 5401-5419.	0.5	25
8	Mouse models of X-linked juvenile retinoschisis have an early onset phenotype, the severity of which varies with genotype. Human Molecular Genetics, 2019, 28, 3072-3090.	2.9	17
9	The circadian clock gene <i>Bmal1</i> i>is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina. FASEB Journal, 2019, 33, 8745-8758.	0.5	21
10	Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons. Cellular and Molecular Life Sciences, 2019, 76, 3407-3432.	5 . 4	18
11	Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and $M\tilde{A}\frac{1}{4}$ ller glial cells. American Journal of Physiology - Cell Physiology, 2019, 316, C121-C133.	4.6	73
12	Conditional deletion of <i>Des1</i> ii the mouse retina does not impair the visual cycle in cones. FASEB Journal, 2019, 33, 5782-5792.	0.5	22
13	Evidence of retinal degeneration in Wolfram syndrome. Ophthalmic Genetics, 2019, 40, 34-38.	1.2	9
14	Genetically-guided algorithm development and sample size optimization for age-related macular degeneration cases and controls in electronic health records from the VA Million Veteran Program. AMIA Summits on Translational Science Proceedings, 2019, 2019, 153-162.	0.4	0
15	Reduced expression of the gene does not normalize the distribution or function of mGluR6 in the mouse retina. Molecular Vision, 2019, 25, 890-901.	1.1	0
16	Noninvasive Electroretinographic Procedures for the Study of the Mouse Retina. Current Protocols in Mouse Biology, 2018, 8, 1-16.	1,2	33
17	Prevention of Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome. Scientific Reports, 2018, 8, 1286.	3. 3	23
18	Impact of MCT1 Haploinsufficiency on the Mouse Retina. Advances in Experimental Medicine and Biology, 2018, 1074, 375-380.	1.6	5

#	Article	IF	Citations
19	Deletion of GLUT1 in mouse lens epithelium leads to cataract formation. Experimental Eye Research, 2018, 172, 45-53.	2.6	22
20	Use of Direct Current Electroretinography for Analysis of Retinal Pigment Epithelium Function in Mouse Models. Methods in Molecular Biology, 2018, 1753, 103-113.	0.9	5
21	Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. Journal of General Physiology, 2018, 150, 571-590.	1.9	28
22	Microtubule-Associated Protein 1 Light Chain 3B, (LC3B) Is Necessary to Maintain Lipid-Mediated Homeostasis in the Retinal Pigment Epithelium. Frontiers in Cellular Neuroscience, 2018, 12, 351.	3.7	34
23	Rational Tuning of Visual Cycle Modulator Pharmacodynamics. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 131-145.	2.5	19
24	A missense mutation in <i>Grm6</i> reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function. Journal of Neurophysiology, 2017, 118, 845-854.	1.8	13
25	Mouse models of human ocular disease for translational research. PLoS ONE, 2017, 12, e0183837.	2.5	37
26	A mutagenesis-derived mouse mutant with abnormal retinal vasculature and low bone mineral density. Molecular Vision, 2017, 23, 140-148.	1.1	7
27	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	21.4	1,167
28	Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nature Genetics, 2016, 48, 144-151.	21.4	50
29	Complement anaphylatoxin receptors C3aR and C5aR are required in the pathogenesis of experimental autoimmune uveitis. Journal of Leukocyte Biology, 2016, 99, 447-454.	3.3	29
30	A Chemical Mutagenesis Screen Identifies Mouse Models with ERG Defects. Advances in Experimental Medicine and Biology, 2016, 854, 177-183.	1.6	12
31	Identification of a new mutant allele, <i>Grm6</i> ^{<i>nob7</i>} , for complete congenital stationary night blindness. Visual Neuroscience, 2015, 32, E004.	1.0	14
32	Light-Regulated Thyroid Hormone Signaling Is Required for Rod Photoreceptor Development in the Mouse Retina., 2015, 56, 8248.		17
33	Glycosylation of rhodopsin is necessary for its stability and incorporation into photoreceptor outer segment discs. Human Molecular Genetics, 2015, 24, 2709-2723.	2.9	27
34	Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. Journal of Neurophysiology, 2015, 113, 1085-1099.	1.8	72
35	Ciliary Neurotrophic Factor for Macular Telangiectasia Type 2: Results From a Phase 1ÂSafety Trial. American Journal of Ophthalmology, 2015, 159, 659-666.e1.	3.3	72
36	Disruption of murine <i>Adamts 4</i> results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation. Human Molecular Genetics, 2015, 24, ddv399.	2.9	41

#	Article	IF	Citations
37	Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness. Human Molecular Genetics, 2015, 24, 6229-6239.	2.9	60
38	Deficiency of CC chemokine ligand 2 and decay-accelerating factor causes retinal degeneration in mice. Experimental Eye Research, 2015, 138, 126-133.	2.6	22
39	Differential Loss of Prolyl Isomerase or Chaperone Activity of Ran-binding Protein 2 (Ranbp2) Unveils Distinct Physiological Roles of Its Cyclophilin Domain in Proteostasis. Journal of Biological Chemistry, 2014, 289, 4600-4625.	3.4	15
40	Selective Impairment of a Subset of Ran-GTP-binding Domains of Ran-binding Protein 2 (Ranbp2) Suffices to Recapitulate the Degeneration of the Retinal Pigment Epithelium (RPE) Triggered by Ranbp2 Ablation. Journal of Biological Chemistry, 2014, 289, 29767-29789.	3.4	24
41	GPR179 Is Required for High Sensitivity of the mGluR6 Signaling Cascade in Depolarizing Bipolar Cells. Journal of Neuroscience, 2014, 34, 6334-6343.	3.6	58
42	Mouse b-wave mutants. Documenta Ophthalmologica, 2014, 128, 77-89.	2.2	43
43	Retinal and Nonocular Abnormalities in Cyp27a1Cyp46a1 Mice with Dysfunctional Metabolism of Cholesterol. American Journal of Pathology, 2014, 184, 2403-2419.	3.8	40
44	Inducing a Visceral Organ to Protect a Peripheral Capillary Bed. American Journal of Pathology, 2014, 184, 1890-1899.	3.8	14
45	Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Human Molecular Genetics, 2014, 23, 5827-5837.	2.9	52
46	Interdependence Among Members of the mGluR6 G-protein Mediated Signalplex of Retinal Depolarizing Bipolar Cells., 2014,, 67-79.		12
47	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	21.4	687
48	Distinct and Atypical Intrinsic and Extrinsic Cell Death Pathways between Photoreceptor Cell Types upon Specific Ablation of Ranbp2 in Cone Photoreceptors. PLoS Genetics, 2013, 9, e1003555.	3.5	32
49	Myosin 6 Is Required for Iris Development and Normal Function of the Outer Retina., 2013, 54, 7223.		12
50	Ultrastructural Localization of GPR179 and the Impact of Mutant Forms on Retinal Function in CSNB1 Patients and a Mouse Model., 2013, 54, 6973.		8
51	Transient Receptor Potential Melastatin 1: A Hair Cell Transduction Channel Candidate. PLoS ONE, 2013, 8, e77213.	2.5	9
52	Presence of the Gpr179(nob5) allele in a C3H-derived transgenic mouse. Molecular Vision, 2013, 19, 2615-25.	1.1	11
53	Depolarizing bipolar cell dysfunction due to a Trpm1 point mutation. Journal of Neurophysiology, 2012, 108, 2442-2451.	1.8	42
54	Guidance-Cue Control of Horizontal Cell Morphology, Lamination, and Synapse Formation in the Mammalian Outer Retina. Journal of Neuroscience, 2012, 32, 6859-6868.	3.6	62

#	Article	IF	Citations
55	Response properties of slow PIII in the Large vls mutant. Documenta Ophthalmologica, 2012, 125, 203-209.	2.2	6
56	Age-related changes in visual function in cystathionine-beta-synthase mutant mice, a model of hyperhomocysteinemia. Experimental Eye Research, 2012, 96, 124-131.	2.6	47
57	Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease. Visual Neuroscience, 2012, 29, 267-274.	1.0	31
58	A Novel Role of Complement in Retinal Degeneration. , 2012, 53, 7684.		61
59	GPR179 Is Required for Depolarizing Bipolar Cell Function and Is Mutated in Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2012, 90, 331-339.	6.2	131
60	Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis. Journal of Clinical Investigation, 2012, 122, 3012-3023.	8.2	54
61	Class 5 Transmembrane Semaphorins Control Selective Mammalian Retinal Lamination and Function. Neuron, 2011, 71, 460-473.	8.1	137
62	A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration. PLoS ONE, 2011, 6, e25598.	2.5	46
63	Visual abnormalities associated with enhanced optic nerve myelination. Brain Research, 2011, 1374, 36-42.	2.2	16
64	Autoantibodies in Melanoma-Associated Retinopathy Target TRPM1 Cation Channels of Retinal ON Bipolar Cells. Journal of Neuroscience, 2011, 31, 3962-3967.	3.6	73
65	Genome-wide association identifies SKIV2L and MYRIP as protective factors for age-related macular degeneration. Genes and Immunity, 2010, 11, 609-621.	4.1	55
66	Photoreceptor Degeneration, Azoospermia, Leukoencephalopathy, and Abnormal RPE Cell Function in Mice Expressing an Early Stop Mutation in <i>CLCN2</i> ., 2010, 51, 3264.		29
67	Mutations of the Opsin Gene (Y102H and I307N) Lead to Light-induced Degeneration of Photoreceptors and Constitutive Activation of Phototransduction in Mice. Journal of Biological Chemistry, 2010, 285, 14521-14533.	3.4	36
68	Suppression of Ca2+ signaling in a mouse model of Best disease. Human Molecular Genetics, 2010, 19, 1108-1118.	2.9	92
69	Mutations in Lama 1 Disrupt Retinal Vascular Development and Inner Limiting Membrane Formation. Journal of Biological Chemistry, 2010, 285, 7697-7711.	3.4	85
70	Light-Evoked Responses of the Retinal Pigment Epithelium: Changes Accompanying Photoreceptor Loss in the Mouse. Journal of Neurophysiology, 2010, 104, 391-402.	1.8	36
71	Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization. Cell, 2010, 141, 191.	28.9	1
72	Protective Effect of Paraoxonase 1 Gene Variant Gln192Arg in Age-Related Macular Degeneration. American Journal of Ophthalmology, 2010, 149, 513-522.	3.3	23

#	Article	IF	CITATIONS
73	Genetic variants near <i>TIMP3</i> and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7401-7406.	7.1	475
74	Mutation screen of \hat{l}^2 -crystallin genes in 274 patients with age-related macular degeneration. Ophthalmic Genetics, 2010, 31, 129-134.	1.2	2
75	Proteomic and Genomic Biomarkers for Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2010, 664, 411-417.	1.6	30
76	Early Synaptic Defects in <i>tulp1</i> ^{â^'/â^'} Mice. , 2009, 50, 3074.		48
77	A Transient Receptor Potential-Like Channel Mediates Synaptic Transmission in Rod Bipolar Cells. Journal of Neuroscience, 2009, 29, 6088-6093.	3.6	192
78	Functional roles of bestrophins in ocular epithelia. Progress in Retinal and Eye Research, 2009, 28, 206-226.	15.5	125
79	Ankyrin-B is required for coordinated expression of beta-2-spectrin, the Na/K-ATPase and the Na/Ca exchanger in the inner segment of rod photoreceptors. Experimental Eye Research, 2009, 88, 57-64.	2.6	37
80	Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization. Cell, 2009, 139, 285-298.	28.9	377
81	Assessing Susceptibility to Age-related Macular Degeneration with Proteomic and Genomic Biomarkers. Molecular and Cellular Proteomics, 2009, 8, 1338-1349.	3.8	88
82	Membrane frizzled-related protein is necessary for the normal development and maintenance of photoreceptor outer segments. Visual Neuroscience, 2008, 25, 563-574.	1.0	42
83	Membrane frizzled-related protein is necessary for the normal development and maintenance of photoreceptor outer segments. Visual Neuroscience, 2008, 25, 713-716.	1.0	9
84	An Intramembrane Glutamic Acid Governs Peripherin/rds Function for Photoreceptor Disk Morphogenesis., 2007, 48, 2975.		27
85	Formation and progression of sub-retinal pigment epithelium deposits in Efemp1 mutation knock-in mice: a model for the early pathogenic course of macular degeneration. Human Molecular Genetics, 2007, 16, 2423-2432.	2.9	113
86	Partial Rescue of Retinal Function and Sterol Steady-State in a Rat Model of Smith-Lemli-Opitz Syndrome. Pediatric Research, 2007, 61, 273-278.	2.3	29
87	Nyctalopin Expression in Retinal Bipolar Cells Restores Visual Function in a Mouse Model of Complete X-Linked Congenital Stationary Night Blindness. Journal of Neurophysiology, 2007, 98, 3023-3033.	1.8	90
88	Bilateral Macular Lesions in a 10-year-old Girl. American Journal of Ophthalmology, 2007, 143, 184-185.	3.3	3
89	Electrophysiological responses of the mouse retina to 12C ions. Neuroscience Letters, 2007, 416, 231-235.	2.1	17
90	Interaction between the Photoreceptor-Specific Tubby-like Protein 1 and the Neuronal-Specific GTPase Dynamin-1., 2007, 48, 2837.		52

#	Article	IF	CITATIONS
91	Voltage-Dependent Calcium Channel CaV1.3 Subunits Regulate the Light Peak of the Electroretinogram. Journal of Neurophysiology, 2007, 97, 3731-3735.	1.8	59
92	Branch retinal artery occlusion associated with compound heterozygous genotype for methylenetetrahydrofolate reductase. Documenta Ophthalmologica, 2007, 114, 163-168.	2.2	3
93	Attenuation of oscillatory potentials in nob2 mice. Documenta Ophthalmologica, 2007, 115, 173-186.	2.2	13
94	Electrophysiologic assessment of the mouse visual system. Documenta Ophthalmologica, 2007, 115, 125-125.	2.2	1
95	Mutation Screen of the Cone-Specific Gene, CLUL1, in 376 Patients with Age-Related Macular Degeneration. Ophthalmic Genetics, 2006, 27, 151-155.	1.2	7
96	Light-induced exacerbation of retinal degeneration in a rat model of Smith–Lemli–Opitz syndrome. Experimental Eye Research, 2006, 82, 496-504.	2.6	38
97	Functional abnormalities in the retinal pigment epithelium of CFTR mutant mice. Experimental Eye Research, 2006, 83, 424-428.	2.6	22
98	Visual cortical plasticity following unilateral sensorimotor cortical lesions in the neonatal rat. Experimental Neurology, 2006, 199, 122-129.	4.1	13
99	Expression of bestrophinâ€1, the product of the VMD2 gene, modulates voltageâ€dependent Ca 2+ channels in retinal pigment epithelial cells. FASEB Journal, 2006, 20, 178-180.	0.5	179
100	Neuronal Pentraxins Mediate Synaptic Refinement in the Developing Visual System. Journal of Neuroscience, 2006, 26, 6269-6281.	3.6	156
101	Mapping a new genetic locus for X linked retinitis pigmentosa to Xq28. Journal of Medical Genetics, 2006, 43, e27-e27.	3.2	15
102	The Light Peak of the Electroretinogram Is Dependent on Voltage-gated Calcium Channels and Antagonized by Bestrophin (Best-1). Journal of General Physiology, 2006, 127, 577-589.	1.9	186
103	The <i>nob2</i> mouse, a null mutation in <i>Cacna1f</i> : Anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Visual Neuroscience, 2006, 23, 11-24.	1.0	194
104	Status of the feline retina 5 years after subretinal implantation. Journal of Rehabilitation Research and Development, 2006, 43, 723.	1.6	25
105	Chapter 16 Experimental genetic disorders and visual neurophysiology. Handbook of Clinical Neurophysiology, 2005, , 329-346.	0.0	0
106	Insulin Receptor Substrate 2 Is Essential for Maturation and Survival of Photoreceptor Cells. Journal of Neuroscience, 2005, 25, 1240-1248.	3.6	69
107	Cochlin and glaucoma: A mini-review. Visual Neuroscience, 2005, 22, 605-613.	1.0	21
108	Pharmacological studies of the mouse cone electroretinogram. Visual Neuroscience, 2005, 22, 631-636.	1.0	56

#	Article	IF	CITATIONS
109	Proteomics Reveal Cochlin Deposits Associated with Glaucomatous Trabecular Meshwork. Journal of Biological Chemistry, 2005, 280, 6080-6084.	3.4	140
110	Ocular abnormalities in Largemyd and Largevls mice, spontaneous models for muscle, eye, and brain diseases. Molecular and Cellular Neurosciences, 2005, 30, 160-172.	2.2	74
111	Cochlin deposits in the trabecular meshwork of the glaucomatous DBA/2J mouse. Experimental Eye Research, 2005, 80, 741-744.	2.6	38
112	A Model of Best Vitelliform Macular Dystrophy in Rats. , 2004, 45, 3733.		55
113	Retinal Degeneration in a Rodent Model of Smith-Lemli-Opitz Syndrome. JAMA Ophthalmology, 2004, 122, 1190.	2.4	59
114	Probing inner retinal circuits in the rod pathway: A comparison of c-fos activation in mutant mice. Visual Neuroscience, 2004, 21, 873-881.	1.0	10
115	Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project. Advances in Space Research, 2004, 33, 1347-1351.	2.6	11
116	Retinal abnormalities associated with the G90D mutation in opsin. Journal of Comparative Neurology, 2004, 478, 149-163.	1.6	33
117	Light-Evoked Responses of the Mouse Retinal Pigment Epithelium. Journal of Neurophysiology, 2004, 91, 1134-1142.	1.8	64
118	Contribution of Kir4.1 to the mouse electroretinogram. Molecular Vision, 2004, 10, 650-4.	1.1	34
119	Electrophysiological analysis of visual function in mutant mice. Documenta Ophthalmologica, 2003, 107, 13-35.	2.2	104
120	Loss of bipolar cells resulting from the expression of bcl-2 directed by the IRBP promoter. Experimental Eye Research, 2003, 77, 477-483.	2.6	7
121	In vivo gene transfer as a means to study the physiology and morphogenesis of the retinal pigment epithelium in the rat. Methods, 2003, 30, 277-285.	3.8	5
122	Identification of the Gene and the Mutation Responsible for the MousenobPhenotype., 2003, 44, 378.		105
123	Pharmacological analysis of the rat cone electroretinogram. Visual Neuroscience, 2003, 20, 297-306.	1.0	42
124	Immunohistochemical analysis of the outer plexiform layer in the nob mouse shows no abnormalities. Visual Neuroscience, 2003, 20, 267-272.	1.0	51
125	Expression and Localization of Bestrophin during Normal Mouse Development., 2003, 44, 3622.		82
126	Electroretinogram (ERG)., 2003,, 110-113.		0

#	Article	IF	CITATIONS
127	Noninvasive recording and response characteristics of the rat dc-electroretinogram. Visual Neuroscience, 2002, 19, 693-701.	1.0	19
128	Mutations in the RPGR gene cause X-linked cone dystrophy. Human Molecular Genetics, 2002, 11, 605-611.	2.9	115
129	Elimination of the 🗓 Subunit Abolishes GABA _C Receptor Expression and Alters Visual Processing in the Mouse Retina. Journal of Neuroscience, 2002, 22, 4163-4174.	3.6	109
130	Temporal Properties of the Mouse Cone Electroretinogram. Journal of Neurophysiology, 2002, 87, 42-48.	1.8	67
131	Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Investigative Ophthalmology and Visual Science, 2002, 43, 1595-603.	3.3	146
132	Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. Journal of Rehabilitation Research and Development, 2002, 39, 313-21.	1.6	35
133	Retinal Degeneration in the nervous Mutant Mouse. IV. Inner Retinal Changes. Experimental Eye Research, 2001, 72, 243-252.	2.6	12
134	Immunohistochemical Studies of the Retina Following Long-term Implantation with Subretinal Microphotodiode Arrays. Experimental Eye Research, 2001, 73, 333-343.	2.6	75
135	Transgenic Bcl-2 Expressed in Photoreceptor Cells Confers Both Death-sparing and Death-inducing Effects. Experimental Eye Research, 2001, 73, 711-721.	2.6	17
136	Electroretinograms remain normal in mice lacking a synapse associated protein. Neuroscience Letters, 2001, 298, 111-114.	2.1	4
137	Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001, 9, 86-95.	4.9	183
138	Age-Related Changes in the Mouse Outer Retina. Optometry and Vision Science, 2001, 78, 425-430.	1.2	90
139	Visual evoked potentials to infrared stimulation in normal cats and rats. Documenta Ophthalmologica, 2001, 103, 155-162.	2.2	16
140	Evaluation of an Artificial Retina in Rodent Models of Photoreceptor Degeneration., 2001,, 175-182.		3
141	nob: A Mouse Model of CSNB1., 2001, , 319-328.		8
142	The rhodopsin cycle is preserved in IRBP "knockout―mice despite abnormalities in retinal structure and function. Visual Neuroscience, 2000, 17, 97-105.	1.0	88
143	Retinal structure and function in an animal model that replicates the biochemical hallmarks of desmosterolosis. Neurochemical Research, 2000, 25, 685-694.	3.3	17
144	Retinal Degeneration in the nervous Mutant Mouse. III. Electrophysiological Studies of the Visual Pathway. Experimental Eye Research, 2000, 70, 467-473.	2.6	25

#	Article	IF	Citations
145	Degeneration of Cone Photoreceptors Induced by Expression of the Mas1 Protooncogene. Experimental Neurology, 2000, 163, 207-219.	4.1	46
146	The Subretinal Microphotodiode Array Retinal Prosthesis II. Ophthalmic Research, 1999, 31, 246-246.	1.9	35
147	The Subretinal Microphotodiode Array Retinal Prosthesis. Ophthalmic Research, 1998, 30, 195-196.	1.9	59
148	Early Onset Photoreceptor Abnormalities Induced by Targeted Disruption of the Interphotoreceptor Retinoid-Binding Protein Gene. Journal of Neuroscience, 1998, 18, 4511-4520.	3.6	105
149	Subretinal Semiconductor Microphotodiode Array. Ophthalmic Surgery Lasers and Imaging Retina, 1998, 29, 234-241.	0.7	99
150	Functional consequences of oncogene-induced horizontal cell degeneration in the retinas of transgenic mice. Visual Neuroscience, 1997, 14, 627-632.	1.0	38
151	A 221-bp fragment of the mouse opsin promoter directs expression specifically to the rod photoreceptors of transgenic mice. Visual Neuroscience, 1997, 14, 617-625.	1.0	18
152	Effect of tunicamycin on histological organization and Na, K-ATPase distribution in the adult cat retina. Neuroscience Letters, 1997, 226, 139-141.	2.1	2
153	The Effect of Peripherin/rds Haploinsufficiency on Rod and Cone Photoreceptors. Journal of Neuroscience, 1997, 17, 8118-8128.	3.6	111
154	The Vpp Mouse., 1997,, 89-97.		1
155	Rod phototransduction in transgenic mice expressing a mutant opsin gene. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13, 577.	1.5	58
156	Morphological and Physiological Consequences of the Selective Elimination of Rod Photoreceptors in Transgenic Mice. Experimental Eye Research, 1996, 63, 35-49.	2.6	66
157	Polygenic Disease and Retinitis Pigmentosa: Albinism Exacerbates Photoreceptor Degeneration Induced by the Expression of a Mutant Opsin in Transgenic Mice. Journal of Neuroscience, 1996, 16, 7853-7858.	3.6	43
158	Functional consequences of oncogene-induced photoreceptor degeneration in transgenic mice. Visual Neuroscience, 1995, 12, 513-522.	1.0	26
159	Mechanisms of Rhodopsin Inactivation in Vivo as Revealed by a COOH-Terminal Truncation Mutant. Science, 1995, 267, 374-377.	12.6	280
160	Short-term changes in the response characteristics of the human visual evoked potential. Vision Research, 1994, 34, 2823-2831.	1.4	29
161	Component-specific effects of physostigmine on the cat visual evoked potential. Experimental Brain Research, 1993, 95, 271-6.	1.5	24
162	Comparison of three methods of estimating the parameters of the Naka-Rushton equation. Documenta Ophthalmologica, 1993, 84, 19-30.	2.2	39

#	Article	IF	Citations
163	Comparison of cone?mediated electroretinograms obtained before and after vincristine chemotherapy. Documenta Ophthalmologica, 1993, 84, 231-235.	2.2	O
164	The effects of physostigmine on the response characteristics of the cat visual evoked potential. Documenta Ophthalmologica, 1993, 84, 257-265.	2.2	3
165	Properties of the mouse cone-mediated electroretinogram during light adaptation. Neuroscience Letters, 1993, 162, 9-11.	2.1	105
166	Light adaptation, rods, and the human cone flicker ERG. Visual Neuroscience, 1992, 8, 145-150.	1.0	44
167	Rapid and slow changes in the human cone electroretinogram during light and dark adaptation. Vision Research, 1992, 32, 2049-2053.	1.4	19
168	Light adaptation and the luminance-response function of the cone electroretinogram. Documenta Ophthalmologica, 1992, 79, 363-369.	2.2	21
169	Effects of light adaptation on the response characteristics of human oscillatory potentials. Electroencephalography and Clinical Neurophysiology, 1991, 78, 27-34.	0.3	32
170	Intravitreal U75412E: A New Free Radical Scavenger. Ophthalmic Surgery Lasers and Imaging Retina, 1991, 22, 740-744.	0.7	0
171	Correlation of Electroretinographic Findings and Peripheral Retinal Nonperfusion in Patients With Sickle Cell Retinopathy. JAMA Ophthalmology, 1990, 108, 1106.	2.4	12
172	Spatial properties of rod-cone interactions in flicker and hue detection. Vision Research, 1990, 30, 1205-1210.	1.4	15
173	Electroretinographic Findings in Human Oculocutaneous Albinism. Ophthalmology, 1989, 96, 1778-1785.	5.2	29
174	The luminance-response function of the dark-adapted human electroretinogram. Vision Research, 1989, 29, 263-270.	1.4	83
175	Properties of the human cone system electroretinogram during light adaptation. Applied Optics, 1989, 28, 1145.	2.1	58
176	Rod and Cone Dysfunction in Carriers of X-linked Retinitis Pigmentosa. Ophthalmology, 1988, 95, 677-685.	5.2	58
177	Rod and cone system contributions to oscillatory potentials: An explanation for the conditioning flash effect. Vision Research, 1987, 27, 859-866.	1.4	51
178	Rod influence on thresholds using different detection criteria during dark adaptation. Acta Psychologica, 1987, 64, 261-270.	1.5	7
179	Interocular sensitization to a rod-detected test. Vision Research, 1986, 26, 1119-1127.	1.4	6
180	Interocular transfer and dark adaptation to long-wave test lights. Vision Research, 1984, 24, 1043-1048.	1.4	11