

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4511517/publications.pdf Version: 2024-02-01

VF \MU

#	Article	IF	CITATIONS
1	A Universal Ternaryâ€Solventâ€Ink Strategy toward Efficient Inkjetâ€Printed Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2107798.	11.1	109
2	Leadâ€Free Halide Double Perovskites: Structure, Luminescence, and Applications. Small Structures, 2021, 2, 2000071.	6.9	71
3	Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery. Nature Communications, 2021, 12, 3879.	5.8	76
4	Efficient, Stable, and Tunable Cold/Warm White Light from Leadâ€Free Halide Double Perovskites Cs ₂ Zr _{1â€} <i>_x</i> Te <i>_x</i> Cl ₆ . Advanced Optical Materials, 2021, 9, 2100815.	3.6	30
5	Interfacialâ€Tunnelingâ€Effectâ€Enhanced CsPbBr ₃ Photodetectors Featuring High Detectivity and Stability. Advanced Functional Materials, 2019, 29, 1904461.	7.8	70
6	Highly Luminescent and Stable Halide Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 673-681.	8.8	129
7	CsPbBr ₃ Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification. Advanced Materials, 2019, 31, e1900767.	11.1	329
8	Surface Halogen Compensation for Robust Performance Enhancements of CsPbX ₃ Perovskite Quantum Dots. Advanced Optical Materials, 2019, 7, 1900276.	3.6	138
9	Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. New Journal of Chemistry, 2018, 42, 4603-4611.	1.4	58
10	Heterogeneous Nucleation toward Polarâ€Solventâ€Free, Fast, and Oneâ€Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. Advanced Materials Interfaces, 2018, 5, 1800010.	1.9	49
11	Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application. Nanoscale, 2018, 10, 359-365.	2.8	32
12	Spaceâ€Confined Growth of CsPbBr ₃ Film Achieving Photodetectors with High Performance in All Figures of Merit. Advanced Functional Materials, 2018, 28, 1804394.	7.8	108
13	In Situ Passivation of PbBr ₆ ^{4–} Octahedra toward Blue Luminescent CsPbBr ₃ Nanoplatelets with Near 100% Absolute Quantum Yield. ACS Energy Letters, 2018, 3, 2030-2037.	8.8	402
14	All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small, 2017, 13, 1603996.	5.2	537
15	Constructing Fast Carrier Tracks into Flexible Perovskite Photodetectors To Greatly Improve Responsivity. ACS Nano, 2017, 11, 2015-2023.	7.3	274
16	Simple and Fast Patterning Process by Laser Direct Writing for Perovskite Quantum Dots. Advanced Materials Technologies, 2017, 2, 1700132.	3.0	55
17	Highly stable and flexible photodetector arrays based on low dimensional CsPbBr ₃ microcrystals and on-paper pencil-drawn electrodes. Journal of Materials Chemistry C, 2017, 5, 7441-7445.	2.7	51
18	Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Research, 2017, 10, 1584-1594.	5.8	134

Ye Wu

#	Article	IF	CITATIONS
19	Healing Allâ€Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. Advanced Functional Materials, 2016, 26, 5903-5912.	7.8	296
20	CuO/ZnO memristors via oxygen or metal migration controlled by electrodes. AIP Advances, 2016, 6, .	0.6	14
21	CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2435-2445.	7.8	2,055
22	Amorphous ZnO based resistive random access memory. RSC Advances, 2016, 6, 17867-17872.	1.7	109