Johannes Hunger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4511515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single methyl group drastically changes urea's hydration dynamics. Journal of Chemical Physics, 2022, 156, 164504.	1.2	3
2	Role of Water in CaCO ₃ Biomineralization. Journal of the American Chemical Society, 2021, 143, 1758-1762.	6.6	28
3	Dielectric response of light, heavy and heavy-oxygen water: isotope effects on the hydrogen-bonding network's collective relaxation dynamics. Physical Chemistry Chemical Physics, 2021, 23, 5467-5473.	1.3	11
4	Association Equilibria of Organo-Phosphoric Acids with Imines from a Combined Dielectric and Nuclear Magnetic Resonance Spectroscopy Approach. Analytical Chemistry, 2021, 93, 3914-3921.	3.2	0
5	Probing Water State during Lipidic Mesophases Phase Transitions. Angewandte Chemie, 2021, 133, 25478-25484.	1.6	2
6	Interfacial Water Structure of Binary Liquid Mixtures Reflects Nonideal Behavior. Journal of Physical Chemistry B, 2021, 125, 10639-10646.	1.2	8
7	Probing Water State during Lipidic Mesophases Phase Transitions. Angewandte Chemie - International Edition, 2021, 60, 25274-25280.	7.2	10
8	Between a hydrogen and a covalent bond. Science, 2021, 371, 123-124.	6.0	28
9	Enhancement of Ion Pairing of Sr(II) and Ba(II) Salts by a Tritopic Ionâ€Pair Receptor in Solution. ChemPhysChem, 2020, 21, 1957-1965.	1.0	2
10	Composition-Dependent Hydrogen-Bonding Motifs and Dynamics in BrÃ,nsted Acid–Base Mixtures. Journal of Physical Chemistry B, 2020, 124, 7229-7238.	1.2	7
11	The Bending Mode of Water: A Powerful Probe for Hydrogen Bond Structure of Aqueous Systems. Journal of Physical Chemistry Letters, 2020, 11, 8459-8469.	2.1	175
12	Vibrational couplings and energy transfer pathways of water's bending mode. Nature Communications, 2020, 11, 5977.	5.8	50
13	Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Nature Communications, 2020, 11, 1611.	5.8	31
14	On the origin of the extremely different solubilities of polyethers in water. Nature Communications, 2019, 10, 2893.	5.8	88
15	CF3-groups critically enhance the binding of thiourea catalysts to ketones – a NMR and FT-IR study. Journal of Molecular Liquids, 2019, 296, 111829.	2.3	3
16	Hydrophobic pattern of alkylated ureas markedly affects water rotation and hydrogen bond dynamics in aqueous solution. Physical Chemistry Chemical Physics, 2019, 21, 20672-20677.	1.3	6
17	Energy Relaxation and Thermal Diffusion in Infrared Pump–Probe Spectroscopy of Hydrogen-Bonded Liquids. Journal of Physical Chemistry Letters, 2019, 10, 3447-3452.	2.1	10
18	Hydrogenâ€Bond Structure and Dynamics of TADDOL Asymmetric Organocatalysts Correlate with Catalytic Activity. Chemistry - A European Journal, 2019, 25, 9984-9990.	1.7	3

#	Article	IF	CITATIONS
19	Dynamics of Dicyanamide in Ionic Liquids is Dominated by Local Interactions. Journal of Physical Chemistry B, 2019, 123, 1831-1839.	1.2	14
20	Specific Ion Effects on an Oligopeptide: Bidentate Binding Matters for the Guanidinium Cation. Angewandte Chemie - International Edition, 2019, 58, 332-337.	7.2	10
21	Spezifische Ionenâ€Effekte am Beispiel eines Oligopeptids: die Rolle zweizäniger Koordination beim Guanidiniumâ€Kation. Angewandte Chemie, 2019, 131, 338-343.	1.6	Ο
22	Dynamical heterogeneities of rotational motion in room temperature ionic liquids evidenced by molecular dynamics simulations. Journal of Chemical Physics, 2018, 148, 193811.	1.2	15
23	Saturation of charge-induced water alignment at model membrane surfaces. Science Advances, 2018, 4, eaap7415.	4.7	76
24	Intense THz-assisted modulation of semiconductor optical properties. , 2018, , .		0
25	Large Hydrogen-Bond Mismatch between TMAO and Urea Promotes Their Hydrophobic Association. CheM, 2018, 4, 2615-2627.	5.8	27
26	Tritopic ion-pair receptors based on anion–π interactions for selective CaX ₂ binding. Dalton Transactions, 2018, 47, 7883-7887.	1.6	17
27	Simulating Energy Relaxation in Pump–Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids. Journal of Chemical Theory and Computation, 2017, 13, 1284-1292.	2.3	18
28	Trimethylamine- <i>N</i> -oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 6909-6920.	1.3	39
29	Complexity in Acid–Base Titrations: Multimer Formation Between Phosphoric Acids and Imines. Chemistry - A European Journal, 2017, 23, 10853-10860.	1.7	12
30	Anionic and cationic Hofmeister effects are non-additive for guanidinium salts. Physical Chemistry Chemical Physics, 2017, 19, 9724-9728.	1.3	11
31	Harvesting the photoexcited holes on a photocatalytic proton reduction metal–organic framework. Faraday Discussions, 2017, 201, 71-86.	1.6	14
32	Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites. Nature Communications, 2017, 8, 687.	5.8	63
33	Picosecond orientational dynamics of water in living cells. Nature Communications, 2017, 8, 904.	5.8	57
34	A water window on surface chemistry. Science, 2017, 357, 755-756.	6.0	2
35	Hofmeisterâ€Effekte unter der Lupe: Die direkte Anionâ€Amidâ€Bindung ist schwÜher als die Kationâ€Amidâ€Bindung. Angewandte Chemie, 2016, 128, 8257-8261. 	1.6	5
36	Dissecting Hofmeister Effects: Direct Anion–Amide Interactions Are Weaker than Cation–Amide Binding. Angewandte Chemie - International Edition, 2016, 55, 8125-8128.	7.2	38

#	Article	IF	CITATIONS
37	A new force field including charge directionality for TMAO in aqueous solution. Journal of Chemical Physics, 2016, 145, 064103.	1.2	7
38	Femto- to Nanosecond Dynamics in Ionic Liquids: From Single Molecules to Collective Motions. Advances in Dielectrics, 2016, , 53-71.	1.2	2
39	Unveiling the Amphiphilic Nature of TMAO by Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 17435-17443.	1.5	33
40	Water in Contact with a Cationic Lipid Exhibits Bulklike Vibrational Dynamics. Journal of Physical Chemistry B, 2016, 120, 10069-10078.	1.2	26
41	Organic Linker Defines the Excitedâ€State Decay of Photocatalytic MILâ€125(Ti)â€Type Materials. ChemSusChem, 2016, 9, 388-395.	3.6	84
42	lonic Liquids: Not only Structurally but also Dynamically Heterogeneous. Angewandte Chemie - International Edition, 2015, 54, 687-690.	7.2	41
43	Hydrogen Bond Dynamics in Primary Alcohols: A Femtosecond Infrared Study. Journal of Physical Chemistry B, 2015, 119, 1558-1566.	1.2	28
44	<i>Ab Initio</i> Liquid Water Dynamics in Aqueous TMAO Solution. Journal of Physical Chemistry B, 2015, 119, 10597-10606.	1.2	44
45	Ultrafast Vibrational Dynamics of Water Disentangled by Reverse Nonequilibrium <i>AbÂlnitio</i> Molecular Dynamics Simulations. Physical Review X, 2015, 5, .	2.8	31
46	Role of Ion-Pairs in BrÃ,nsted Acid Catalysis. ACS Catalysis, 2015, 5, 6630-6633.	5.5	21
47	Quantifying transient interactions between amide groups and the guanidinium cation. Physical Chemistry Chemical Physics, 2015, 17, 28539-28543.	1.3	14
48	Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nature Communications, 2015, 6, 8384.	5.8	132
49	Water-mediated interactions between trimethylamine-N-oxide and urea. Physical Chemistry Chemical Physics, 2015, 17, 298-306.	1.3	70
50	Observation of Water Separated Ion-Pairs between Cations and Phospholipid Headgroups. Journal of Physical Chemistry B, 2014, 118, 4397-4403.	1.2	18
51	Effect of Cations on the Hydrated Proton. Journal of the American Chemical Society, 2014, 136, 12808-12811.	6.6	12
52	Aqueous Heterogeneity at the Air/Water Interface Revealed by 2Dâ€HDâ€ S FG Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 8146-8149.	7.2	106
53	Dynamics of RTILs: A comparative dielectric and OKE study. Journal of Molecular Liquids, 2014, 192, 19-25.	2.3	72
54	Hydration of Sodium Alginate in Aqueous Solution. Macromolecules, 2014, 47, 771-776.	2.2	45

#	Article	IF	CITATIONS
55	Liquid flow along a solid surface reversibly alters interfacial chemistry. Science, 2014, 344, 1138-1142.	6.0	187
56	Femtosecond study of the effects of ions and hydrophobes on the dynamics of water. Faraday Discussions, 2013, 160, 171-189.	1.6	55
57	A Conductance Study of Guanidinium Chloride, Thiocyanate, Sulfate, and Carbonate in Dilute Aqueous Solutions: Ion-Association and Carbonate Hydrolysis Effects. Journal of Physical Chemistry B, 2013, 117, 615-622.	1.2	22
58	On the Orientational Mobility of Water Molecules in Proton and Sodium Terminated Nafion Membranes. Journal of Physical Chemistry C, 2013, 117, 12930-12935.	1.5	31
59	Dielectric Relaxation and Solvation Dynamics in a Prototypical Ionic Liquid + Dipolar Protic Liquid Mixture: 1-Butyl-3-Methylimidazolium Tetrafluoroborate + Water. Journal of Physical Chemistry B, 2013, 117, 15356-15368.	1.2	64
60	Structure and Dynamics of 1- <i>N</i> -Alkyl-3- <i>N</i> -Methylimidazolium Tetrafluoroborate + Acetonitrile Mixtures. Journal of Physical Chemistry B, 2012, 116, 7509-7521.	1.2	61
61	Hydrogen-Bond Dynamics in a Protic Ionic Liquid: Evidence of Large-Angle Jumps. Journal of Physical Chemistry Letters, 2012, 3, 3034-3038.	2.1	65
62	Hydration Dynamics of Hyaluronan and Dextran. Biophysical Journal, 2012, 103, L10-L12.	0.2	47
63	Complex Formation in Aqueous Trimethylamine- <i>N</i> -oxide (TMAO) Solutions. Journal of Physical Chemistry B, 2012, 116, 4783-4795.	1.2	127
64	Energy Relaxation Dynamics of the Hydration Complex of Hydroxide. Journal of Physical Chemistry A, 2011, 115, 14593-14598.	1.1	28
65	Anisotropic Water Reorientation around Ions. Journal of Physical Chemistry B, 2011, 115, 12638-12647.	1.2	108
66	Association of ionic liquids in solution: a combined dielectric and conductivity study of [bmim][Cl] in water and in acetonitrile. Physical Chemistry Chemical Physics, 2011, 13, 17588.	1.3	87
67	1-Ethyl-3-methylimidazolium Ethylsulfate in Water, Acetonitrile, and Dichloromethane: Molar Conductivities and Association Constants. Journal of Chemical & Engineering Data, 2011, 56, 1261-1267.	1.0	65
68	Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter, 2011, 7, 1678.	1.2	104
69	Rattling the cage: Micro- to mesoscopic structure in liquids as simple as argon and as complicated as water. Journal of Molecular Liquids, 2011, 159, 2-8.	2.3	37
70	Vibrational and orientational dynamics of water in aqueous hydroxide solutions. Journal of Chemical Physics, 2011, 135, 124517.	1.2	23
71	Precision waveguide system for measurement of complex permittivity of liquids at frequencies from 60 to 90ÂGHz. Review of Scientific Instruments, 2011, 82, 104703.	0.6	7
72	Chemical Speciation in Ionic Liquids and their Mixtures with Polar Solvents Using Dielectric Spectroscopy. ACS Symposium Series, 2010, , 61-74.	0.5	2

#	Article	IF	CITATIONS
73	Terahertz dynamics of ionic liquids from a combined dielectric relaxation, terahertz, and optical Kerr effect study: evidence for mesoscopic aggregation. Proceedings of SPIE, 2010, , .	0.8	1
74	Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO. Journal of Chemical & Engineering Data, 2010, 55, 1799-1803.	1.0	57
75	Are Nanoscale Ion Aggregates Present in Aqueous Solutions of Guanidinium Salts?. Journal of Physical Chemistry B, 2010, 114, 13617-13627.	1.2	50
76	Influence of Concentration and Temperature on the Dynamics of Water in the Hydrophobic Hydration Shell of Tetramethylurea. Journal of the American Chemical Society, 2010, 132, 15671-15678.	6.6	124
77	Correlation between polarity parameters and dielectric properties of [Na][TOTO]—a sodium ionic liquid. Physical Chemistry Chemical Physics, 2010, 12, 14341.	1.3	48
78	Relative Permittivity of Dimethylsulfoxide and <i>N</i> , <i>N</i> -Dimethylformamide at Temperatures from (278 to 328) K and Pressures from (0.1 to 5) MPa. Journal of Chemical & Engineering Data, 2010, 55, 2055-2065.	1.0	27
79	Temperature Dependence of the Dielectric Properties and Dynamics of Ionic Liquids. ChemPhysChem, 2009, 10, 723-733.	1.0	196
80	Broadband dielectric response of dichloromethane. Chemical Physics Letters, 2009, 471, 85-91.	1.2	42
81	Dynamics of Imidazolium Ionic Liquids from a Combined Dielectric Relaxation and Optical Kerr Effect Study: Evidence for Mesoscopic Aggregation. Journal of the American Chemical Society, 2009, 131, 11140-11146.	6.6	248
82	Dipole Correlations in the Ionic Liquid 1- <i>N</i> -Ethyl-3- <i>N</i> -methylimidazolium Ethylsulfate and Its Binary Mixtures with Dichloromethane. Journal of Physical Chemistry B, 2009, 113, 9527-9537.	1.2	64
83	Conductivities of Binary Mixtures of Ionic Liquids with Polar Solvents. Journal of Chemical & Engineering Data, 2009, 54, 472-479.	1.0	267
84	Glasslike Behaviour in Aqueous Electrolyte Solutions. Springer Series in Chemical Physics, 2009, , 484-486.	0.2	1
85	Interactions and Dynamics in Ionic Liquids. Journal of Physical Chemistry B, 2008, 112, 4854-4858.	1.2	158
86	Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Chemical Physics, 2008, 128, 214509.	1.2	115
87	From Ionic Liquid to Electrolyte Solution: Dynamics of 1- <i>N</i> -Butyl-3- <i>N</i> -methylimidazolium Tetrafluoroborate/Dichloromethane Mixtures. Journal of Physical Chemistry B, 2008, 112, 12913-12919.	1.2	91
88	Why are ionic liquid ions mainly associated in water? A Car–Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture. Journal of Chemical Physics, 2008, 129, 104505.	1.2	130
89	Glasslike behavior in aqueous electrolyte solutions. Journal of Chemical Physics, 2008, 128, 161102.	1.2	94
90	On the collective network of ionic liquid/water mixtures. II. Decomposition and interpretation of dielectric spectra. Journal of Chemical Physics, 2008, 129, 184501.	1.2	95