
Huiqiong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4510591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Space Program SJ-10 of Microgravity Research. Microgravity Science and Technology, 2014, 26, 159-169.	1.4	94
2	Protein Storage Vacuoles Are Transformed into Lytic Vacuoles in Root Meristematic Cells of Germinating Seedlings by Multiple, Cell Type-Specific Mechanisms Â. Plant Physiology, 2011, 155, 2023-2035.	4.8	78
3	Nodal Endoplasmic Reticulum, a Specialized Form of Endoplasmic Reticulum Found in Gravity-Sensing Root Tip Columella Cells. Plant Physiology, 2001, 125, 252-265.	4.8	73
4	Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta, 2015, 241, 475-488.	3.2	60
5	A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation. Journal of Experimental Botany, 2006, 57, 827-835.	4.8	56
6	Higher Plants in Space: Microgravity Perception, Response, and Adaptation. Microgravity Science and Technology, 2015, 27, 377-386.	1.4	39
7	Modulation of rootâ€skewing responses by <i><scp>KNAT</scp>1</i> in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2013, 76, 380-392.	5.7	34
8	A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Science, 2011, 9, 72.	1.7	28
9	The GAOLAOZHUANGREN1 Gene Encodes a Putative Glycosyltransferase that is Critical for Normal Development and Carbohydrate Metabolism. Plant and Cell Physiology, 2004, 45, 1453-1460.	3.1	27
10	Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses. Protoplasma, 2015, 252, 173-180.	2.1	25
11	Changes in gravitational forces induce the modification of Arabidopsis thaliana silique pedicel positioning. Journal of Experimental Botany, 2010, 61, 3875-3884.	4.8	15
12	Photoperiod-controlling Guttation and Growth of Rice Seedlings Under Microgravity on Board Chinese Spacelab TG-2. Microgravity Science and Technology, 2018, 30, 839-847.	1.4	13
13	Mechano-biological Coupling of Cellular Responses to Microgravity. Microgravity Science and Technology, 2015, 27, 505-514.	1.4	10
14	Circumnutation and Growth of Inflorescence Stems of Arabidopsis thaliana in Response to Microgravity under Different Photoperiod Conditions. Life, 2020, 10, 26.	2.4	10
15	The GAOLAOZHUANGREN2 gene is required for normal glucose response and development of Arabidopsis. Journal of Plant Research, 2004, 117, 473-476.	2.4	9
16	Arabidopsis flowering induced by photoperiod under 3-D clinostat rotational simulated microgravity. Acta Astronautica, 2020, 166, 567-572.	3.2	9
17	Changes in Plastid and Mitochondria Protein Expression in Arabidopsis Thaliana Callus on Board Chinese Spacecraft SZ-8. Microgravity Science and Technology, 2015, 27, 387-401.	1.4	8
18	Flowering in space. Microgravity Science and Technology, 2018, 30, 783-791.	1.4	7

#	Article	IF	CITATIONS
19	Molecular Basis to Integrate Microgravity Signals into the Photoperiodic Flowering Pathway in Arabidopsis thaliana under Spaceflight Condition. International Journal of Molecular Sciences, 2022, 23, 63.	4.1	7
20	Transcriptomic Analysis of the Interaction Between FLOWERING LOCUS T Induction and Photoperiodic Signaling in Response to Spaceflight. Frontiers in Cell and Developmental Biology, 2021, 9, 813246.	3.7	6
21	Electrofusion of tobacco protoplasts in space. Science Bulletin, 2003, 48, 1967-1970.	1.7	3
22	Development of secretory cells and crystal cells in Eichhornia crassipes ramet shoot apex. Protoplasma, 2011, 248, 257-266.	2.1	3
23	<i>BREVIPEDICELLUS</i> and <i>ERECTA</i> control the expression of <i>AtPRX17</i> to prevent Arabidopsis callus browning. Journal of Experimental Botany, 2022, 73, 1516-1532.	4.8	3