Xubo Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4510503/publications.pdf Version: 2024-02-01

XURO LIN

#	Article	IF	CITATIONS
1	A Review on Applications of Computational Methods in Drug Screening and Design. Molecules, 2020, 25, 1375.	1.7	312
2	Structural determinants and functional consequences of protein affinity for membrane rafts. Nature Communications, 2017, 8, 1219.	5.8	231
3	Polyunsaturated Lipids Regulate Membrane Domain Stability by Tuning Membrane Order. Biophysical Journal, 2016, 110, 1800-1810.	0.2	155
4	A Translocation Pathway for Vesicle-Mediated Unconventional Protein Secretion. Cell, 2020, 181, 637-652.e15.	13.5	144
5	Ultraâ€5tretchable and Fast Selfâ€Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber. Advanced Materials, 2022, 34, e2105416.	11.1	110
6	Nanoparticle's Size Effect on Its Translocation Across a Lipid Bilayer: A Molecular Dynamics Simulation. Journal of Computational and Theoretical Nanoscience, 2010, 7, 269-276.	0.4	66
7	Protein Partitioning into Ordered Membrane Domains: Insights from Simulations. Biophysical Journal, 2018, 114, 1936-1944.	0.2	63
8	Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations. Nanoscale, 2014, 6, 2759-2767.	2.8	61
9	Domain Stability in Biomimetic Membranes Driven by Lipid Polyunsaturation. Journal of Physical Chemistry B, 2016, 120, 11930-11941.	1.2	52
10	Shape affects the interactions of nanoparticles with pulmonary surfactant. Science China Materials, 2015, 58, 28-37.	3.5	41
11	Lipid Acyl Chain <i>cis</i> Double Bond Position Modulates Membrane Domain Registration/Anti-Registration. Journal of the American Chemical Society, 2019, 141, 15884-15890.	6.6	36
12	Surface properties of encapsulating hydrophobic nanoparticles regulate the main phase transition temperature of lipid bilayers: A simulation study. Nano Research, 2014, 7, 1195-1204.	5.8	34
13	Molecular dynamics simulations of the interactions of charge-neutral PAMAM dendrimers with pulmonary surfactant. Soft Matter, 2011, 7, 3882.	1.2	33
14	Hydrogen Bond Interaction Promotes Flash Energy Transport at MXene-Solvent Interface. Journal of Physical Chemistry C, 2020, 124, 10306-10314.	1.5	32
15	Computer Simulation of the Effects of Nanoparticles' Adsorption on the Properties of Supported Lipid Bilayer. Journal of Physical Chemistry C, 2012, 116, 17960-17968.	1.5	29
16	Reversible Effects of Peptide Concentration and Lipid Composition on H-Ras Lipid Anchor Clustering. Biophysical Journal, 2015, 109, 2467-2470.	0.2	23
17	Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. Nanoscale, 2020, 12, 4101-4109.	2.8	23
18	Identification of Drug Binding Sites and Action Mechanisms with Molecular Dynamics Simulations. Current Topics in Medicinal Chemistry, 2019, 18, 2268-2277.	1.0	22

Хиво Lin

#	Article	IF	CITATIONS
19	Cholesterol affects C ₆₀ translocation across lipid bilayers. Soft Matter, 2014, 10, 2160-2168.	1.2	20
20	The aliphatic chain of cholesterol modulates bilayer interleaflet coupling and domain registration. FEBS Letters, 2016, 590, 3368-3374.	1.3	20
21	Ultrafast Flash Energy Conductance at MXeneâ€6urfactant Interface and Its Molecular Origins. Advanced Materials Interfaces, 2019, 6, 1901461.	1.9	17
22	Poly(amidoamine) Dendrimer as a Respiratory Nanocarrier: Insights from Experiments and Molecular Dynamics Simulations. Langmuir, 2019, 35, 5364-5371.	1.6	17
23	Cell membrane-biomimetic coating via click-mediated liposome fusion for mitigating the foreign-body reaction. Biomaterials, 2021, 271, 120768.	5.7	17
24	Impact of Shock-Induced Lipid Nanobubble Collapse on a Phospholipid Membrane. Journal of Physical Chemistry C, 2016, 120, 18803-18810.	1.5	15
25	Understanding Membrane Domain-Partitioning Thermodynamics of Transmembrane Domains with Potential of Mean Force Calculations. Journal of Physical Chemistry B, 2019, 123, 1009-1016.	1.2	15
26	Singleâ€Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. ChemBioChem, 2020, 21, 2467-2473.	1.3	14
27	Roles of <scp>PIP</scp> 2 in the membrane binding of <scp>MIM</scp> lâ€ <scp>BAR</scp> : insights from molecular dynamics simulations. FEBS Letters, 2018, 592, 2533-2542.	1.3	13
28	The Prognostic Effect of MAC30 Expression on Patients With Non–Small Cell Lung Cancer Receiving Adjuvant Chemotherapy. Technology in Cancer Research and Treatment, 2017, 16, 645-653.	0.8	10
29	Membrane potential and dynamics in a ternary lipid mixture: insights from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 15841-15851.	1.3	10
30	Evaluation of Interactions between SARS-CoV-2 RBD and Full-Length ACE2 with Coarse-Grained Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 936-944.	2.5	9
31	Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane. Colloids and Surfaces B: Biointerfaces, 2017, 160, 92-100.	2.5	8
32	Molecular View on the Impact of DHA Molecules on the Physical Properties of a Model Cell Membrane. Journal of Chemical Information and Modeling, 2022, 62, 2421-2431.	2.5	7
33	Overexpression of MAC30 is Resistant to Platinum-Based Chemotherapy in Patients With Non-Small Cell Lung Cancer. Technology in Cancer Research and Treatment, 2016, 15, 815-820.	0.8	6
34	Transmembrane potential of physiologically relevant model membranes: Effects of membrane asymmetry. Journal of Chemical Physics, 2020, 153, 105103.	1.2	5
35	Applications of molecular dynamics simulations in drug discovery. , 2022, , 455-465.		4
36	Surface ligand rigidity modulates lipid raft affinity of ultra-small hydrophobic nanoparticles: insights from molecular dynamics simulations. Nanoscale, 2021, 13, 9825-9833.	2.8	3

Хиво Lin

#	Article	IF	CITATIONS
37	Structural Determinants and Functional Consequences of Protein Association with Membrane Domains. Biophysical Journal, 2018, 114, 380a.	0.2	2
38	Advances in missing-in-metastasis research. Chinese Science Bulletin, 2015, 60, 356-366.	0.4	2
39	Ultraâ€Stretchable and Fast Selfâ€Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber (Adv. Mater. 16/2022). Advanced Materials, 2022, 34, .	11.1	2
40	Optimizing purification process of MIM-I-BAR domain by introducing atomic force microscope and dynamics simulations. Colloids and Surfaces B: Biointerfaces, 2017, 157, 391-397.	2.5	1
41	Current Advances in Computational and Experimental Approaches for Nanoparticle-Drug Conjugates. Current Topics in Medicinal Chemistry, 2021, 21, 90-91.	1.0	1
42	Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity <i>via</i> molecular dynamics simulation. Biomaterials Science, 2021, 9, 8249-8258.	2.6	1
43	Dietary Fats Remodel Plasma Membrane Lipidome and Physical Properties to Regulate Phase Separation in Biological Membranes. Biophysical Journal, 2016, 110, 584a.	0.2	0
44	Order Differences between Coexisting Liquid Phases Driven by Lipid Unsaturation Determine Phase Separation in Biomimetic Membranes. Biophysical Journal, 2016, 110, 71a.	0.2	0
45	Computational Insights into the Mechanism and Regulation of Membrane Domain Registration/Anti-Registration. Biophysical Journal, 2020, 118, 79a.	0.2	0
46	The Interactions of Medical Nanoparticles With Model Cell Membrane: a Review of Simulation Studies. Acta Agronomica Sinica(China), 2013, 40, 918.	0.1	0