Chia-Hao Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4510252/publications.pdf

Version: 2024-02-01

516710 580821 26 772 16 25 h-index citations g-index papers 26 26 26 751 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Salinity and Temperature Effects on Cholesterol Accumulation through SIRT1/LXRα/SREBP1 Pathway in Livers of the Indian Medaka (Oryzias dancena). FASEB Journal, 2021, 35, .	0.5	1
2	Timeâ€course changes in the regulation of ions and amino acids in the hard clam <i>Meretrix lusoria</i> upon lower salinity challenge. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2021, 335, 602-613.	1.9	12
3	Cortisol and glucocorticoid receptor 2 regulate acid secretion in medaka (Oryzias latipes) larvae. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 855-864.	1.5	6
4	Nax-positive glial cells in the organum vasculosum laminae terminalis produce epoxyeicosatrienoic acids to induce water intake in response to increases in [Na+] in body fluids. Neuroscience Research, 2020, 154, 45-51.	1.9	10
5	SLC9A4 in the organum vasculosum of the lamina terminalis is a [Na+] sensor for the control of water intake. Pflugers Archiv European Journal of Physiology, 2020, 472, 609-624.	2.8	13
6	[Na+] Increases in Body Fluids Sensed by Central Nax Induce Sympathetically Mediated Blood Pressure Elevations via H+-Dependent Activation of ASIC1a. Neuron, 2019, 101, 60-75.e6.	8.1	70
7	Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca2+ Influx in Hair Cells of Zebrafish Larvae. Frontiers in Physiology, 2018, 9, 649.	2.8	13
8	FXYD8, a Novel Regulator of Renal Na+/K+-ATPase in the Euryhaline Teleost, Tetraodon nigroviridis. Frontiers in Physiology, 2017, 8, 576.	2.8	12
9	Molecular Physiology of the Hypocalcemic Action of Fibroblast Growth Factor 23 in Zebrafish (Danio) Tj ETQq1	1 0.78431	4 rgBT /Overlo
10	Different Modulatory Mechanisms of Renal FXYD12 for Na ⁺ -K ⁺ -ATPase between Two Closely Related Medakas upon Salinity Challenge. International Journal of Biological Sciences, 2016, 12, 730-745.	6.4	20
11	The Control of Calcium Metabolism in Zebrafish (Danio rerio). International Journal of Molecular Sciences, 2016, 17, 1783.	4.1	50
12	lonic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges. Frontiers in Physiology, 2016, 7, 368.	2.8	33
13	Na _x signaling evoked by an increase in [Na ⁺] in CSF induces water intake via EET-mediated TRPV4 activation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R299-R306.	1.8	21
14	Cortisol regulates sodium homeostasis by stimulating the transcription of sodium-chloride transporter (NCC) in zebrafish (Danio rerio). Molecular and Cellular Endocrinology, 2016, 422, 93-102.	3.2	30
15	FXYD11 mediated modulation of Na+/K+-ATPase activity in gills of the brackish medaka (Oryzias dancena) when transferred to hypoosmotic or hyperosmotic environments. Comparative Biochemistry and Physiology Part A, Molecular & Description Physiology, 2016, 194, 19-26.	1.8	19
16	Environmental and cortisol-mediated control of Ca2+ uptake in tilapia (Oreochromis mossambicus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2016, 186, 323-332.	1.5	24
17	Short-term Effects of Hypertonic Shock on Na, K-ATPase Responses in Gills and Kidneys of the Spotted Green Pufferfish,. Zoological Studies, 2016, 55, e29.	0.3	1

#	Article	IF	CITATION
19	Cortisol Regulates Acid Secretion of H+-ATPase-rich lonocytes in Zebrafish (Danio rerio) Embryos. Frontiers in Physiology, 2015, 6, 328.	2.8	27
20	Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI Journal, 2015, 14, 627-59.	0.7	106
21	Calcium-Sensing Receptor Mediates Ca2+ Homeostasis by Modulating Expression of PTH and Stanniocalcin. Endocrinology, 2014, 155, 56-67.	2.8	50
22	Glucocorticoid Receptor, but Not Mineralocorticoid Receptor, Mediates Cortisol Regulation of Epidermal lonocyte Development and Ion Transport in Zebrafish (Danio Rerio). PLoS ONE, 2013, 8, e77997.	2.5	71
23	Effects of ambient cadmium with calcium on mRNA expressions of calcium uptake related transporters in zebrafish (Danio rerio) larvae. Fish Physiology and Biochemistry, 2012, 38, 977-988.	2.3	24
24	Action of Vitamin D and the Receptor, VDRa, in Calcium Handling in Zebrafish (Danio rerio). PLoS ONE, 2012, 7, e45650.	2.5	56
25	Reverse effect of mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via glucocorticoid receptorâ€mediated vitamin D3 metabolism. FASEB Journal, 2012, 26, 1070.6.	0.5	O
26	Reverse Effect of Mammalian Hypocalcemic Cortisol in Fish: Cortisol Stimulates Ca2+ Uptake via Glucocorticoid Receptor-Mediated Vitamin D3 Metabolism. PLoS ONE, 2011, 6, e23689.	2.5	64