
Bertille Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/451023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A colloidal quantum dot infrared photodetector and its use for intraband detection. Nature Communications, 2019, 10, 2125.	5.8	155
2	Terahertz HgTe Nanocrystals: Beyond Confinement. Journal of the American Chemical Society, 2018, 140, 5033-5036.	6.6	107
3	Intraband Mid-Infrared Transitions in Ag ₂ Se Nanocrystals: Potential and Limitations for Hg-Free Low-Cost Photodetection. Journal of Physical Chemistry C, 2018, 122, 18161-18167.	1.5	59
4	HgTe Nanocrystals for SWIR Detection and Their Integration up to the Focal Plane Array. ACS Applied Materials & Interfaces, 2019, 11, 33116-33123.	4.0	53
5	Road Map for Nanocrystal Based Infrared Photodetectors. Frontiers in Chemistry, 2018, 6, 575.	1.8	52
6	HgTe Nanocrystal Inks for Extended Shortâ€Wave Infrared Detection. Advanced Optical Materials, 2019, 7, 1900348.	3.6	52
7	Design of a Unipolar Barrier for a Nanocrystal-Based Short-Wave Infrared Photodiode. ACS Photonics, 2018, 5, 4569-4576.	3.2	49
8	Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances. Journal of Physical Chemistry C, 2018, 122, 14979-14985.	1.5	49
9	Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells. Nano Letters, 2017, 17, 4067-4074.	4.5	48
10	Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets. ACS Applied Materials & Interfaces, 2019, 11, 10128-10134.	4.0	48
11	Near Unity Absorption in Nanocrystal Based Short Wave Infrared Photodetectors Using Guided Mode Resonators. ACS Photonics, 2019, 6, 2553-2561.	3.2	44
12	HgSe Self-Doped Nanocrystals as a Platform to Investigate the Effects of Vanishing Confinement. ACS Applied Materials & Interfaces, 2017, 9, 36173-36180.	4.0	40
13	Probing Charge Carrier Dynamics to Unveil the Role of Surface Ligands in HgTe Narrow Band Gap Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 859-865.	1.5	37
14	Coupled HgSe Colloidal Quantum Wells through a Tunable Barrier: A Strategy To Uncouple Optical and Transport Band Gap. Chemistry of Materials, 2018, 30, 4065-4072.	3.2	32
15	Emergence of intraband transitions in colloidal nanocrystals [Invited]. Optical Materials Express, 2018, 8, 1174.	1.6	27
16	Wave-Function Engineering in HgSe/HgTe Colloidal Heterostructures To Enhance Mid-infrared Photoconductive Properties. Nano Letters, 2018, 18, 4590-4597.	4.5	24
17	Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals. ACS Applied Materials & Interfaces, 2018, 10, 11880-11887.	4.0	23
18	Field-Effect Transistor and Photo-Transistor of Narrow-Band-Gap Nanocrystal Arrays Using Ionic Glasses. Nano Letters, 2019, 19, 3981-3986.	4.5	23

Bertille Martinez

#	Article	IF	CITATIONS
19	Electronic structure of CdSe-ZnS 2D nanoplatelets. Applied Physics Letters, 2017, 110, .	1.5	21
20	Strategy to overcome recombination limited photocurrent generation in CsPbX3 nanocrystal arrays. Applied Physics Letters, 2018, 112, .	1.5	19
21	Transport in ITO Nanocrystals with Short- to Long-Wave Infrared Absorption for Heavy-Metal-Free Infrared Photodetection. ACS Applied Nano Materials, 2019, 2, 1621-1630.	2.4	19
22	Impact of dimensionality and confinement on the electronic properties of mercury chalcogenide nanocrystals. Nanoscale, 2019, 11, 3905-3915.	2.8	18
23	Effect of Pressure on Interband and Intraband Transition of Mercury Chalcogenide Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 13122-13130.	1.5	18
24	Polyoxometalate as Control Agent for the Doping in HgSe Self-Doped Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 26680-26685.	1.5	16
25	Potential of Colloidal Quantum Dot Based Solar Cells for Near-Infrared Active Detection. ACS Photonics, 2020, 7, 272-278.	3.2	13
26	Revealing the Band Structure of FAPI Quantum Dot Film and Its Interfaces with Electron and Hole Transport Layer Using Time Resolved Photoemission. Journal of Physical Chemistry C, 2020, 124, 3873-3880.	1.5	10
27	Azobenzenes as Light-Activable Carrier Density Switches in Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 27257-27263.	1.5	3
28	Designing Photovoltaic Devices Using HgTe Nanocrystals for Short and Midâ€Wave Infrared Detection. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900449.	0.8	3
29	HgTe, the Most Tunable Colloidal Material: from the Strong Confinement Regime to THz Material. MRS Advances, 2018, 3, 2913-2921.	0.5	2