
HélÃ"ne Cattey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4510199/publications.pdf Version: 2024-02-01

ΗÃΩΙèΝΕ CATTEN

#	Article	IF	CITATIONS
1	Synthesis of New Cationic Donor-Stabilized Phosphenium Adducts and Their Unexpected P-Substituent Exchange Reactions. Inorganic Chemistry, 2009, 48, 1236-1242.	4.0	68
2	Conformational Control of Metallocene Backbone by Cyclopentadienyl Ring Substitution: A New Concept in Polyphosphane Ligands Evidenced by "Through-Space―Nuclear SpinⰒSpin Coupling. Application in Heteroaromatics Arylation by Direct Câ°'H Activation. Organometallics, 2009, 28, 3152-3160.	2.3	58
3	Direct Arylation of Heteroaromatic Compounds with Congested, Functionalised Aryl Bromides at Low Palladium/Triphosphane Catalyst Loading. Chemistry - A European Journal, 2011, 17, 6453-6461.	3.3	54
4	Aromatic Nucleophilic Substitution (S _N Ar) of <i>meso</i> -Nitroporphyrin with Azide and Amines as an Alternative Metal Catalyst Free Synthetic Approach To Obtain <i>meso</i> - <i>N</i> -Substituted Porphyrins. Journal of Organic Chemistry, 2014, 79, 6424-6434.	3.2	50
5	Copper(I) Iodide Polyphosphine Adducts at Low Loading for Sonogashira Alkynylation of Demanding Halide Substrates: Ligand Exchange Study between Copper and Palladium. Organometallics, 2010, 29, 2815-2822.	2.3	47
6	First Copper(I) Ferrocenyltetraphosphine Complexes: Possible Involvement in Sonogashira Cross-Coupling Reaction?. Organometallics, 2008, 27, 1506-1513.	2.3	44
7	Building Diversity in <i>ortho</i> -Substituted <i>s</i> -Aryltetrazines By Tuning N-Directed Palladium C–H Halogenation: Unsymmetrical Polyhalogenated and Biphenyl <i>s</i> -Aryltetrazines. ACS Catalysis, 2017, 7, 8493-8501.	11.2	37
8	Input of P, N-(phosphanyl, amino)-ferrocene hybrid derivatives in late transition metals catalysis. Coordination Chemistry Reviews, 2018, 355, 74-100.	18.8	35
9	Electrosynthesis of Imidazolium Carboxylates. Organic Letters, 2013, 15, 4410-4413.	4.6	34
10	Di-n-butyltin oxide as a chemical carbon dioxide capturer. Journal of Organometallic Chemistry, 2010, 695, 1618-1626.	1.8	32
11	Congested Ferrocenyl Polyphosphanes Bearing Electron-Donating or Electron-Withdrawing Phosphanyl Groups: Assessment of Metallocene Conformation from NMR Spin Couplings and Use in Palladium-Catalyzed Chloroarenes Activation. Inorganic Chemistry, 2011, 50, 11592-11603.	4.0	32
12	Syntheses of polyfunctionalized resveratrol derivatives using Wittig and Heck protocols. Tetrahedron, 2012, 68, 3899-3907.	1.9	32
13	Electrochemical meso-functionalization of magnesium(<scp>ii</scp>) porphine. Chemical Communications, 2011, 47, 1893-1895.	4.1	28
14	"Through-space―31P spin–spin couplings in ferrocenyl tetraphosphine coordination complexes: Improvement in the determination of the distance dependence of JPP constants. Journal of Organometallic Chemistry, 2008, 693, 574-578.	1.8	27
15	Control over the oxidative reactivity of metalloporphyrins. Efficient electrosynthesis of meso,meso-linked zinc porphyrin dimer. Dalton Transactions, 2012, 41, 929-936.	3.3	27
16	Electrochemically Induced Câ^'Br and Câ^'l Bond Activation by the Pd3(dppm)3CO2+ Cluster, and Characterization of the Reactive Pd3(dppm)3CO+ Intermediate:  The First Confidently Identified Paramagnetic Pd Cluster. Journal of the American Chemical Society, 2001, 123, 4340-4341.	13.7	26
17	Modular functionalized polyphosphines for supported materials: previously unobserved ³¹ P-NMR «through-space» ABCD spin systems and heterogeneous palladium-catalysed C–C and C–H arylation. Chemical Communications, 2014, 50, 9505-9508.	4.1	26
18	Gold atalyzed Suzuki Coupling of <i>ortho</i> ‣ubstituted Hindered Aryl Substrates. Chemistry - an Asian Journal, 2017, 12, 459-464.	3.3	26

Hélène Cattey

#	Article	IF	CITATIONS
19	Towards sustainable synthesis of pyren-1-yl azoliums via electrochemical oxidative C–N coupling. Green Chemistry, 2015, 17, 4669-4679.	9.0	22
20	Investigation of the Redox Properties of a Cp*Co(dithiolene) Complex. Evidence of the Formation of a Dimeric Dicationic Species: [Cp*Co(dddt)]22+Ââ€. Organometallics, 2001, 20, 2421-2424.	2.3	21
21	Preparative and Electrochemical Investigations on the Electron Sponge Behavior of Cobalt Telluride Clusters: CO Substitution in[Co11Te7(CO)10]nâ~ lons (n=1, 2) by PMe2Ph and Crystal Structure of[Co11Te7(CO)5(PMe2Ph)5]. Chemistry - A European Journal, 2003, 9, 3796-3802.	3.3	21
22	Electron-Sponge Behavior and Electronic Structures in Cobalt-Centered Pentagonal Prismatic Co11Te7(CO)10and Co11Te5(CO)15Cluster Anions. Inorganic Chemistry, 2007, 46, 501-509.	4.0	21
23	Electrochemical Investigations on Liquid-State Polymerizing Systems:Â Case of Solâ^'Gel Polymerization of Transition Metal Alkoxides. Journal of Physical Chemistry B, 1998, 102, 1193-1202.	2.6	20
24	P-Chirogenic Phosphines Supported by Calix[4]arene: New Insight into Palladium-Catalyzed Asymmetric Allylic Substitution. Organometallics, 2013, 32, 2827-2839.	2.3	20
25	Oxidative C–N fusion of pyridinyl-substituted porphyrins. Chemical Communications, 2018, 54, 5414-5417.	4.1	20
26	Palladium-Catalysed Heck Alkynylation of Aryl Bromides in an Imidazolium Ionic Liquid: An Unexpected Subsequent Alkyne Hydrogenation Reaction. Synlett, 2006, 2006, 3005-3008.	1.8	19
27	First donor stabilized-phosphenium copper(I) complexes. Inorganic Chemistry Communication, 2012, 25, 39-42.	3.9	19
28	First Annelated Azaphosphole-Ferrocenes: Synthetic Pathways and Structures. Organometallics, 2012, 31, 5986-5989.	2.3	18
29	Defying Stereotypes with Nanodiamonds: Stable Primary Diamondoid Phosphines. Journal of Organic Chemistry, 2016, 81, 8759-8769.	3.2	18
30	Diastereoselective Synthesis of Dialkylated Bis(phosphino)ferrocenes: Their Use in Promoting Silverâ€Mediated Nucleophilic Fluorination of Chloroquinolines. European Journal of Inorganic Chemistry, 2017, 2017, 330-339.	2.0	18
31	Ferrocenyl (P,N)-diphosphines incorporating pyrrolyl, imidazolyl orÂbenzazaphospholyl moieties: Synthesis, coordination to group 10 metalsÂandÂperformances in palladium-catalyzed arylation reactions. Journal of Organometallic Chemistry, 2013, 735, 38-46.	1.8	17
32	Crystallographic, spectroscopic and electrochemical characterization of pyridine adducts of magnesium(II) and zinc(II) porphine complexes. Comptes Rendus Chimie, 2013, 16, 540-549.	0.5	17
33	Aminomethyl-Substituted Ferrocenes and Derivatives: Straightforward Synthetic Routes, Structural Characterization, and Electrochemical Analysis. Organometallics, 2013, 32, 5784-5797.	2.3	17
34	Palladium-catalyzed heteroaryl thioethers synthesis overcoming palladium dithiolate resting states inertness: Practical road to sulfones and NH-sulfoximines. Catalysis Communications, 2018, 111, 52-58.	3.3	17
35	Bridgeâ€Clamp Bis(tetrazine)s with [N] 8 Ï€â€Stacking Interactions and Azido―s â€Aryl Tetrazines: Two Classes of Doubly Clickable Tetrazines. Angewandte Chemie - International Edition, 2020, 59, 1149-1154.	13.8	17
36	Kinetic and Electrochemical Studies of the Oxidative Addition of Demanding Organic Halides to Pd(0): the Efficiency of Polyphosphane Ligands in Low Palladium Loading Cross-Couplings Decrypted. Inorganic Chemistry, 2013, 52, 11923-11933.	4.0	16

Hélène Cattey

#	Article	IF	CITATIONS
37	Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode. Materials Chemistry and Physics, 2017, 185, 183-194.	4.0	16
38	Phenoxyamidine Zn and Al Complexes: Synthesis, Characterization, and Use in the Ring-Opening Polymerization of Lactide. Organometallics, 2019, 38, 4147-4157.	2.3	16
39	A novel two-dimensional organostannoxane coordination network promoted by phenazine: Synthesis, characterization and X-ray structure of. Journal of Organometallic Chemistry, 2009, 694, 2386-2394.	1.8	14
40	Converging and Diverging Synthetic Strategies to Tetradentate (<i>N</i> , <i>N</i> ′)-Diaminomethyl,(<i>P</i> , <i>P</i> ′)-Ferrocenyl Ligands: Influence of <i>tert</i> Butyl Groups on Ferrocene Backbone Conformation. Organometallics, 2015, 34, 5015-5028.	2.3	14
41	(2â€Pyridyl)sulfonyl Groups for <i>ortho</i> â€Directing Palladium―Catalyzed Carbon–Halogen Bond Formation at Functionalized Arenes. Advanced Synthesis and Catalysis, 2017, 359, 3792-3804.	4.3	14
42	Amphiphilic cholesteric liquid crystals prepared from the quaternary ammonium surfactant <i>S</i> -(â^')-1-hexadecyl-1-methyl-2-pyrrolidinemethanol bromide. Liquid Crystals, 1992, 12, 875-878.	2.2	13
43	Bis(Îtert-butylcyclopentadienyl)hydridoniobium Ditelluride, a Convenient Reagent for the Synthesis of Polynuclear Metal Telluride Complexes. European Journal of Inorganic Chemistry, 2002, 2002, 1315-1325.	2.0	13
44	Electrochemical investigations on the sol–gel polymerization oftransition-metal alkoxides. Journal of Materials Chemistry, 1997, 7, 1461-1466.	6.7	12
45	Synthesis, reactivity and structures of ruthenium carbonyl clusters with telluride and hydride ligands. Journal of Organometallic Chemistry, 2002, 659, 22-28.	1.8	12
46	Planar-Chiral 1,1′-Diboryl Metallocenes: Diastereoselective Synthesis from Boryl Cyclopentadienides and Spin Density Analysis of a Diborylcobaltocene. Inorganic Chemistry, 2017, 56, 1966-1973.	4.0	12
47	A general diastereoselective synthesis of highly functionalized ferrocenyl ambiphiles enabled on a large scale by electrochemical purification. Chemical Communications, 2017, 53, 6017-6020.	4.1	12
48	Highly Functionalized Ferrocenes. European Journal of Inorganic Chemistry, 2020, 2020, 419-445.	2.0	12
49	New reactivity of . Synthesis, electrosynthesis and reactivity of new carboxylato niobocene complexes. Journal of Organometallic Chemistry, 2005, 690, 3134-3141.	1.8	11
50	Selective Preparation of Diamondoid Phosphonates. Journal of Organic Chemistry, 2014, 79, 5369-5373.	3.2	11
51	Gold(I) Complexes Nuclearity in Constrained Ferrocenyl Diphosphines: Dramatic Effect in Goldâ€Catalyzed Enyne Cycloisomerization. Chemistry - an Asian Journal, 2020, 15, 2879-2885.	3.3	11
52	Phosphorusâ€Directed Rhodium atalyzed Câ^'H Arylation of 1â€Pyrenylphosphines Selective at the <i>K</i> â€Region. Advanced Synthesis and Catalysis, 2022, 364, 440-452.	4.3	11
53	Triorganotin(<scp>iv</scp>) cation-promoted dimethyl carbonate synthesis from CO ₂ and methanol: solution and solid-state characterization of an unexpected diorganotin(<scp>iv</scp>)-oxo cluster. New Journal of Chemistry, 2018, 42, 8253-8260.	2.8	10
54	Hexaphosphine: A Multifaceted Ligand for Transition Metal Coordination. European Journal of Inorganic Chemistry, 2012, 2012, 1347-1352.	2.0	9

Hélène Cattey

#	Article	IF	CITATIONS
55	Palladium-catalyzed formation of secondary and tertiary amines from aryl dihalides with air-stable ferrocenyl tri- and diphosphines: Synthesis and X-ray structure of efficient catalysts beyond [PdCl2(DPPF)]. Catalysis Communications, 2014, 51, 10-14.	3.3	9
56	Electrosynthesis as a Powerful Method for the Generation of Catalytic Intermediates: Efficient Isolation of a Palladium Aryl Halide Oxidative Addition Product. Chemistry - A European Journal, 2011, 17, 9901-9906.	3.3	8
57	Functionalized Tri- and Tetraphosphine Ligands as a General Approach for Controlled Implantation of Phosphorus Donors with a High Local Density in Immobilized Molecular Catalysts. ChemPlusChem, 2015, 80, 119-129.	2.8	8
58	Highly Functionalized BrÃ,nsted Acidic/Lewis Basic Hybrid Ferrocene Ligands: Synthesis and Coordination Chemistry. European Journal of Inorganic Chemistry, 2019, 2019, 865-874.	2.0	8
59	Electrosynthesis and Xâ€ray Crystallographic Structure of Zn ^{II} <i>meso</i> â€Triaryltriphenylphosphonium Porphyrin and Structural Comparison with Mg ^{II} <i>meso</i> â€Triphenylphosphonium Porphine. European Journal of Inorganic Chemistry. 2018. 2018. 4834-4841.	2.0	7
60	Reappraising Schmidpeter's bis(iminophosphoranyl)phosphides: coordination to transition metals and bonding analysis. Chemical Science, 2021, 12, 253-269.	7.4	7
61	Organotin(IV) trifluoromethanesulfonates chemistry: Isolation and characterization of a new di-n-butyl derivative presenting a Sn3O3 core. Inorganica Chimica Acta, 2012, 380, 50-56.	2.4	6
62	Electrosynthesis of Poly(alanine)-Like Peptides in Concentrated Alanine Based Electrolytes, Characterization Coupled to DFT Study and Application to pH Proton Receptor. Journal of Physical Chemistry C, 2014, 118, 25041-25050.	3.1	6
63	Unsymmetrically Substituted Bis(phosphino)Ferrocenes Triggering Through-Space ³¹ (P,) Tj ETQq1 1 3571-3584.	0.784314 2.3	rgBT /Over 6
64	Coordinatively Unsaturated Amidotitanocene Cations with Inverted σ and π Bond Strengths: Controlled Release of Aminyl Radicals and Hydrogenation/Dehydrogenation Catalysis. Chemistry - A European Journal, 2021, 27, 18175-18187.	3.3	6
65	A sterically congested 1,2-diphosphino-1′-boryl-ferrocene: synthesis, characterization and coordination to platinum. Dalton Transactions, 2019, 48, 11191-11195.	3.3	5
66	Synthesis and structural characterisation of bulky heptaaromatic (hetero)aryl <i>o</i> -substituted <i>s</i> -aryltetrazines. New Journal of Chemistry, 2020, 44, 15235-15243.	2.8	5
67	Crystal structure of 2-methyl-1 <i>H</i> -imidazol-3-ium hydrogen oxalate dihydrate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1113-1115.	0.5	5
68	Tetranuclear Dicationic Aurophilic Gold(I) Catalysts in Enyne Cycloisomerization: Cooperativity for a Dramatic Shift in Selectivity. Chemistry - A European Journal, 2022, 28, .	3.3	5
69	New acridinium trifluoromethanesulfonate stacks induced in the presence of organotin(IV) complexes. Comptes Rendus Chimie, 2013, 16, 613-620.	0.5	4
70	Crystal structure of dimethylammonium hydrogen oxalate hemi(oxalic acid). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 473-475.	0.5	4
71	Bridgeâ€Clamp Bis(tetrazine)s with [N] 8 Ï€â€Stacking Interactions and Azido―s â€Aryl Tetrazines: Two Classes of Doubly Clickable Tetrazines. Angewandte Chemie, 2020, 132, 1165-1170.	2.0	4
72	Regioselective C–H amination of free base porphyrins <i>via</i> electrogenerated pyridinium-porphyrins and stabilization of easily oxidized amino-porphyrins by protonation. Chemical Communications, 2020, 56, 884-887.	4.1	4

HéLèNE CATTEY

#	Article	IF	CITATIONS
73	Crystal structure of the diglycidyl ether of eugenol. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 694-697.	0.5	4
74	Synthesis and Characterization of Novel Quinolyl Porphyrins as Receptors. Study of their Association with Halophenols and 4â€Nitrophenol as a Reference. European Journal of Inorganic Chemistry, 2020, 2020, 551-560.	2.0	3
75	Tris(cyclohexylammonium)cis-dichloridobis(oxalato-κ2O1,O2)stannate(Ⅳ) chloride monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m581-m582.	0.2	3
76	Multi-layered type hybrid glass/polypyrrole composite. Synthetic Metals, 1998, 93, 127-131.	3.9	2
77	Electron-transfer-catalyzed ligand substitution of carboxylato niobocene complex induced by electrochemical oxidation. Journal of Organometallic Chemistry, 2004, 689, 3473-3480.	1.8	2
78	Evidence of intramolecular electron transfer between two metallic atoms in a bimetallic complex by electrochemical methods. New Journal of Chemistry, 2005, 29, 1302.	2.8	2
79	Direct Writing on Copper Ion Doped Silica Films by Electrogeneration of Metallic Microstructures. Journal of Physical Chemistry C, 2017, 121, 1129-1139.	3.1	2
80	Bis(cyclohexylammonium) tetrachlorido(oxalato)stannate(IV). Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m473-m474.	0.2	2
81	Template Synthesis of NPN′ Pincer-type Ligands at Titanium Using an Ambiphilic Phosphide Scaffold. Inorganic Chemistry, 2022, 61, 7642-7653.	4.0	2
82	catena-Poly[[di-n-butyltin(IV)]-μ-trifluoromethanesulfonato-[[di-n-butyl(trifluoromethanesulfonato)tin(IV)]-di-μ Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2820-m2822.	/4-hydroxo 0.2]]. ₁
83	Tribenzylammonium chloride. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o618-o619.	0.2	1
84	Bio-based 1,3-diisobutyl imidazolium hydrogen oxalate [iBu ₂ IM](HC ₂ O ₄) as CO ₂ shuttle. Green Chemistry, 2017, 19, 4912-4918.	9.0	1
85	Synthesis, spectroscopic study, and crystal structure of a new organotin(IV) selenate derivative. Main Group Metal Chemistry, 2018, 41, 183-188.	1.6	1
86	s-Block metal scorpionates – A new sodium hydrido-tris(3,5-dimethyl-1-pyrazolyl)borate salt showing an unusual core stabilized by bridging and terminal O-bonded DMSO ligands. Main Group Metal Chemistry, 2020, 43, 102-110.	1.6	1
87	Stepwise Oxidative C–C Coupling and/or C–N Fusion of Zn(II) <i>meso</i> -Pyridin-2-ylthio-porphyrins. Inorganic Chemistry, 2022, , .	4.0	1
88	Crystallographic and (spectro)electrochemical characterizations of cobalt(II) 10-phenyl-5,15-di-p-tolylporphyrin. Journal of Molecular Structure, 2021, 1226, 129321.	3.6	0
89	Coordination Chemistry of a Bis(Tetrazine) Tweezer: A Case of Host-Guest Behavior with Silver Salts. Molecules, 2021, 26, 2705.	3.8	0
90	Organotin(IV) selenate derivatives – Crystal structure of [{(Ph3Sn)2SeO4} ⋠CH3OH] n. Main Group Metal Chemistry, 2021, 44, 213-217.	1.6	0

#	Article	IF	CITATIONS
91	Ethylammonium hydrogen oxalate–oxalic acid (2/1). IUCrData, 2019, 4, .	0.3	Ο