
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4510195/publications.pdf Version: 2024-02-01

1 I	*	7	10

#	Article	IF	CITATIONS
1	Characterization of <i>CsTSI</i> in the Biosynthesis of Theanine in Tea Plants (<i>Camellia) Tj ETQq1 1 0.78431</i>	1 rgBT 2.4	/Overlock 10 T
2	Diverse roles of <scp>MYB</scp> transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (<i>Camellia sinensis</i>). Plant Journal, 2022, 110, 1144-1165.	2.8	42
3	CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytologist, 2022, 234, 902-917.	3.5	38
4	Metabolite Profiling and Transcriptome Analysis Revealed the Conserved Transcriptional Regulation Mechanism of Caffeine Biosynthesis in Tea and Coffee Plants. Journal of Agricultural and Food Chemistry, 2022, 70, 3239-3251.	2.4	14
5	CsMYB184 regulates caffeine biosynthesis in tea plants. Plant Biotechnology Journal, 2022, 20, 1012-1014.	4.1	18
6	Tea plant roots respond to aluminum-induced mineral nutrient imbalances by transcriptional regulation of multiple cation and anion transporters. BMC Plant Biology, 2022, 22, 203.	1.6	9
7	Critical metabolic pathways and SAD/FADs, WRI1s, and DGATs cooperate for high-oleic acid oil production in developing oil tea (<i>Camellia oleifera)</i> seeds. Horticulture Research, 2022, 9, .	2.9	9
8	Triterpenoid saponins in tea (<i>Camellia sinensis</i>) plants: biosynthetic gene expression, content variations, chemical identification and cytotoxicity. International Journal of Food Sciences and Nutrition, 2021, 72, 308-323.	1.3	14
9	lsoflavone malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by modifying synthesis and secretion of isoflavones. Journal of Experimental Botany, 2021, 72, 1349-1369.	2.4	25
10	Role of Glycine max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in lipid biosynthesis and stress tolerance in soybean. Functional Plant Biology, 2021, 48, 171.	1.1	16
11	Phospholipase D―and phosphatidic acidâ€mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (<i>Glycine max</i>). Plant Journal, 2021, 106, 142-158.	2.8	13
12	Molecular Basis of the Distinct Metabolic Features in Shoot Tips and Roots of Tea Plants (<i>Camellia) Tj ETQqO and Food Chemistry, 2021, 69, 3415-3429.</i>	0 0 rgł 2.4	BT /Overlock 10 ⁻ 17
13	MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. Journal of Experimental Botany, 2021, 72, 4401-4418.	2.4	29
14	CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis). Horticulture Research, 2021, 8, 104.	2.9	32
15	CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator–repressor network. Horticulture Research, 2021, 8, 110.	2.9	49
16	Comparative transcriptome analysis reveals key genes associated with pigmentation in radish (Raphanus sativus L.) skin and flesh. Scientific Reports, 2021, 11, 11434.	1.6	9
17	Overexpression of Terpenoid Biosynthesis Genes From Garden Sage (Salvia officinalis) Modulates Rhizobia Interaction and Nodulation in Soybean. Frontiers in Plant Science, 2021, 12, 783269.	1.7	8
18	Assembly status transition offers an avenue for activity modulation of a supramolecular enzyme. ELife, 2021, 10, .	2.8	3

#	Article	IF	CITATIONS
19	Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (<i>Glycine max</i>). Plant Biotechnology Journal, 2020, 18, 155-171.	4.1	52
20	GmMAX2–D14 and –KAI interactionâ€mediated SL and KAR signaling play essential roles in soybean root nodulation. Plant Journal, 2020, 101, 334-351.	2.8	35
21	Tea plant genomics: achievements, challenges and perspectives. Horticulture Research, 2020, 7, 7.	2.9	114
22	Genome-wide analysis and metabolic profiling unveil the role of peroxidase CsGPX3 in theaflavin production in black tea processing. Food Research International, 2020, 137, 109677.	2.9	19
23	Metabolite Profiling and Transcriptome Analysis Revealed the Chemical Contributions of Tea Trichomes to Tea Flavors and Tea Plant Defenses. Journal of Agricultural and Food Chemistry, 2020, 68, 11389-11401.	2.4	21
24	Metabolite and Transcriptome Profiling on Xanthine Alkaloids-Fed Tea Plant (Camellia sinensis) Shoot Tips and Roots Reveal the Complex Metabolic Network for Caffeine Biosynthesis and Degradation. Frontiers in Plant Science, 2020, 11, 551288.	1.7	13
25	Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. Plant Journal, 2020, 103, 1351-1371.	2.8	28
26	Transcriptome and Metabolic Profiling Unveiled Roles of Peroxidases in Theaflavin Production in Black Tea Processing and Determination of Tea Processing Suitability. Journal of Agricultural and Food Chemistry, 2020, 68, 3528-3538.	2.4	33
27	Genome-Wide Analysis of Serine Carboxypeptidase-Like Acyltransferase Gene Family for Evolution and Characterization of Enzymes Involved in the Biosynthesis of Galloylated Catechins in the Tea Plant (Camellia sinensis). Frontiers in Plant Science, 2020, 11, 848.	1.7	33
28	The Reference Genome of Tea Plant and Resequencing of 81 Diverse Accessions Provide Insights into Its Genome Evolution and Adaptation. Molecular Plant, 2020, 13, 1013-1026.	3.9	257
29	Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology, 2020, 40, 667-688.	5.1	88
30	The tea plant reference genome and improved gene annotation using long-read and paired-end sequencing data. Scientific Data, 2019, 6, 122.	2.4	29
31	Endophytic Bacteria as Contributors to Theanine Production in <i>Camellia sinensis</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 10685-10693.	2.4	26
32	PLDα1-knockdown soybean seeds display higher unsaturated glycerolipid contents and seed vigor in high temperature and humidity environments. Biotechnology for Biofuels, 2019, 12, 9.	6.2	28
33	Rr <scp>MYB</scp> 5―and Rr <scp>MYB</scp> 10â€regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in <i>Rosa rugosa</i> . Plant Biotechnology Journal, 2019, 17, 2078-2095.	4.1	63
34	Draft genome sequence of <i>Camellia sinensis</i> var. <i>sinensis</i> provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4151-E4158.	3.3	730
35	Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microbial Pathogenesis, 2018, 114, 420-430.	1.3	41
36	Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biology, 2018, 18, 233.	1.6	84

#	Article	IF	CITATIONS
37	<i>De novo</i> transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (<i>Salvia guaranitica</i> L.). DNA Research, 2018, 25, 597-617.	1.5	41
38	Understanding the genetic regulation of anthocyanin biosynthesis in plants – Tools for breeding purple varieties of fruits and vegetables. Phytochemistry, 2018, 153, 11-27.	1.4	140
39	Diverse functions of multidrug and toxin extrusion (<scp>MATE</scp>) transporters in citric acid efflux and metal homeostasis in <i>Medicago truncatula</i> . Plant Journal, 2017, 90, 79-95.	2.8	83
40	Analysis of multiple soybean phytonutrients by near-infrared reflectance spectroscopy. Analytical and Bioanalytical Chemistry, 2017, 409, 3515-3525.	1.9	24
41	Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Scientific Reports, 2017, 7, 16074.	1.6	57
42	Transport and transcriptional regulation of oil production in plants. Critical Reviews in Biotechnology, 2017, 37, 641-655.	5.1	56
43	The Divergence of Flowering Time Modulated by FT/TFL1 Is Independent to Their Interaction and Binding Activities. Frontiers in Plant Science, 2017, 8, 697.	1.7	24
44	Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 Differently Modify Isoflavone Glucosides in Soybean (Glycine max) under Various Stresses. Frontiers in Plant Science, 2017, 8, 735.	1.7	36
45	Soybean LEC2 Regulates Subsets of Genes Involved in Controlling the Biosynthesis and Catabolism of Seed Storage Substances and Seed Development. Frontiers in Plant Science, 2017, 8, 1604.	1.7	72
46	Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biology, 2017, 17, 185.	1.6	64
47	Functional characterization of soybean strigolactone biosynthesis and signaling genes in Arabidopsis MAX mutants and GmMAX3 in soybean nodulation. BMC Plant Biology, 2017, 17, 259.	1.6	42
48	Regulation of anthocyanin and proanthocyanidin biosynthesis by <i><scp>M</scp>edicago truncatula</i> b <scp>HLH</scp> transcription factor <scp>M</scp> t <scp>TT</scp> 8. New Phytologist, 2016, 210, 905-921.	3.5	136
49	Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. Plant Biotechnology Journal, 2016, 14, 1604-1618.	4.1	64
50	Two types of soybean diacylglycerol acyltransferases are differentially involved in triacylglycerol biosynthesis and response to environmental stresses and hormones. Scientific Reports, 2016, 6, 28541.	1.6	59
51	Ca ²⁺ â€regulated and diurnal rhythmâ€regulated Na ⁺ /Ca ²⁺ exchanger AtNCL affects flowering time and auxin signalling in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 377-392.	2.8	35
52	Ferulic acid enhances nitric oxide production through up-regulation of argininosuccinate synthase in inflammatory human endothelial cells. Life Sciences, 2016, 145, 224-232.	2.0	13
53	Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 2016, 62, 55-74.	5.3	288
54	Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling. Plant Science, 2016, 245, 35-49.	1.7	59

JIAN ZHAO

#	Article	IF	CITATIONS
55	<scp>CHX</scp> 14 is a plasma membrane <scp><scp>K</scp></scp> â€efflux transporter that regulates <scp><scp>K</scp></scp> + redistribution in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> . Plant, Cell and Environment, 2015, 38, 2223-2238.	2.8	48
56	Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling. Journal of Experimental Botany, 2015, 66, 1721-1736.	2.4	146
57	Flavonoid transport mechanisms: how to go, and with whom. Trends in Plant Science, 2015, 20, 576-585.	4.3	266
58	Disequilibrium of Flavonol Synthase and Dihydroflavonol-4-Reductase Expression Associated Tightly to White vs. Red Color Flower Formation in Plants. Frontiers in Plant Science, 2015, 6, 1257.	1.7	130
59	Ferulic acid enhances the vasorelaxant effect of epigallocatechin gallate in tumor necrosis factor-alpha-induced inflammatory rat aorta. Journal of Nutritional Biochemistry, 2014, 25, 807-814.	1.9	31
60	Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytologist, 2013, 199, 228-240.	3.5	100
61	Biochemical Analysis of the Interaction Between Phospholipase Dα1 and GTP-Binding Protein α-Subunit from Arabidopsis thaliana. Methods in Molecular Biology, 2013, 1043, 21-35.	0.4	11
62	MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1766-1771.	3.3	135
63	Phytonutrient and Phytotherapy for Improving Health. , 2012, , 47-58.		0
64	MATE2 Mediates Vacuolar Sequestration of Flavonoid Glycosides and Glycoside Malonates in <i>Medicago truncatula</i> Â Â Â. Plant Cell, 2011, 23, 1536-1555.	3.1	227
65	Suppression of Phospholipase Dγs Confers Increased Aluminum Resistance in Arabidopsis thaliana. PLoS ONE, 2011, 6, e28086.	1.1	45
66	The Mysteries of Proanthocyanidin Transport and Polymerization. Plant Physiology, 2010, 153, 437-443.	2.3	185
67	The â€~ins' and â€~outs' of flavonoid transport. Trends in Plant Science, 2010, 15, 72-80.	4.3	390
68	Interaction between Arabidopsis Ca2+/H+ Exchangers CAX1 and CAX3. Journal of Biological Chemistry, 2009, 284, 4605-4615.	1.6	51
69	Functional Studies of Split Arabidopsis Ca2+/H+ Exchangers. Journal of Biological Chemistry, 2009, 284, 34075-34083.	1.6	41
70	MATE Transporters Facilitate Vacuolar Uptake of Epicatechin 3â€2- <i>O</i> -Glucoside for Proanthocyanidin Biosynthesis in <i>Medicago truncatula</i> and <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2323-2340.	3.1	332
71	Root development under metal stress in <i>Arabidopsis thaliana</i> requires the H ⁺ /cation antiporter CAX4. New Phytologist, 2009, 183, 95-105.	3.5	102
72	The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta, 2008, 227, 659-669.	1.6	110

#	Article	IF	CITATIONS
73	AtCHX13 Is a Plasma Membrane K+ Transporter Â. Plant Physiology, 2008, 148, 796-807.	2.3	94
74	Plant Troponoids: Chemistry, Biological Activity, and Biosynthesis. Current Medicinal Chemistry, 2007, 14, 2597-2621.	1.2	98
75	Interplay Among Nitric Oxide and Reactive Oxygen Species. Plant Signaling and Behavior, 2007, 2, 544-547.	1.2	43
76	In planta regulation of the Arabidopsis Ca2+/H+ antiporter CAX1. Journal of Experimental Botany, 2007, 58, 3419-3427.	2.4	59
77	Nutraceuticals, Nutritional Therapy, Phytonutrients, and Phytotherapy for Improvement of Human Health: A Perspective on Plant Biotechnology Application. Recent Patents on Biotechnology, 2007, 1, 75-97.	0.4	117
78	Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis. New Phytologist, 2007, 175, 215-229.	3.5	49
79	Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochemistry Reviews, 2007, 6, 435-457.	3.1	111
80	A Bifurcating Pathway Directs Abscisic Acid Effects on Stomatal Closure and Opening in Arabidopsis. Science, 2006, 312, 264-266.	6.0	375
81	Signal transduction and metabolic flux of β-thujaplicin and monoterpene biosynthesis in elicited Cupressus lusitanica cell cultures. Metabolic Engineering, 2006, 8, 14-29.	3.6	23
82	Wounding Stimulates the Accumulation of Glycerolipids Containing Oxophytodienoic Acid and Dinor-Oxophytodienoic Acid in Arabidopsis Leaves. Plant Physiology, 2006, 142, 28-39.	2.3	202
83	Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 2005, 23, 283-333.	6.0	1,555
84	Oxidative stress in plant cell culture: A role in production of β-thujaplicin byCupresssus lusitanica suspension culture. Biotechnology and Bioengineering, 2005, 90, 621-631.	1.7	66
85	Identification of a Crucial Histidine Involved in Metal Transport Activity in the Arabidopsis Cation/H+ Exchanger CAX1. Journal of Biological Chemistry, 2005, 280, 30136-30142.	1.6	63
86	Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to Â-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. Journal of Experimental Botany, 2004, 55, 1003-1012.	2.4	62
87	Arabidopsis Phospholipase Dα1 Interacts with the Heterotrimeric G-protein α-Subunit through a Motif Analogous to the DRY Motif in G-protein-coupled Receptors. Journal of Biological Chemistry, 2004, 279, 1794-1800.	1.6	172
88	Phospholipase DÂ1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9508-9513.	3.3	476
89	Involvement of cAMP signaling in elicitorâ€induced phytoalexin accumulation in Cupressus lusitanica cell cultures. New Phytologist, 2004, 161, 723-733.	3.5	32
90	Rapid accumulation and metabolism of polyphosphoinositol and its possible role in phytoalexin biosynthesis in yeast elicitor-treated Cupressus lusitanica cell cultures. Planta, 2004, 219, 121-131.	1.6	31

JIAN ZHAO

#	Article	IF	CITATIONS
91	Peroxidases are involved in biosynthesis and biodegradation of βâ€ŧhujaplicin in fungal elicitorâ€ŧreated Cupressus lusitanica cell cultures. New Phytologist, 2003, 159, 719-731.	3.5	19
92	Multiple signalling pathways mediate fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. Journal of Experimental Botany, 2003, 54, 647-656.	2.4	81
93	Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+ influx and the oxidative burst. Plant Science, 2001, 161, 423-431.	1.7	86
94	Production of β-Thujaplicin in Cupressus lusitanica Suspension Cultures Fed with Organic Acids and Monoterpenes. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1027-1032.	0.6	6
95	Improved β-thujaplicin production in Cupressus lusitanica suspension cultures by fungal elicitor and methyl jasmonate. Applied Microbiology and Biotechnology, 2001, 55, 301-305.	1.7	51
96	Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Applied Microbiology and Biotechnology, 2001, 55, 693-698.	1.7	65
97	Compact callus cluster suspension cultures of Catharanthus roseus with enhanced indole alkaloid biosynthesis. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 68-72.	0.9	27
98	Enhanced catharanthine production in catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme and Microbial Technology, 2001, 28, 673-681.	1.6	117
99	Selection of fungal elicitors to increase indole alkaloid accumulation in catharanthus roseus suspension cell culture. Enzyme and Microbial Technology, 2001, 28, 666-672.	1.6	80
100	Title is missing!. Plant Growth Regulation, 2001, 33, 43-49.	1.8	44
101	Title is missing!. Plant Growth Regulation, 2001, 33, 33-41.	1.8	22
102	Involvement of Peroxidase and Hydrogen Peroxide in the Metabolism of β-Thujaplicin in Fungal Elicitor-Treated Cupressus Lusitanica Suspension Cultures. Progress in Biotechnology, 2001, , 263-272.	0.2	2
103	Title is missing!. Biotechnology Letters, 2000, 22, 509-514.	1.1	45
104	Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock. Biotechnology Letters, 2000, 22, 1227-1231.	1.1	28
105	Promotion of indole alkaloid production in Catharanthus roseus cell cultures by rare earth elements. Biotechnology Letters, 2000, 22, 825-828.	1.1	34
106	Improved alkaloid production in Catharanthus roseus suspension cell cultures by various chemicals. Biotechnology Letters, 2000, 22, 1221-1226.	1.1	53