Changzheng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4510147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singleâ€Atom Pt as Coâ€Catalyst for Enhanced Photocatalytic H ₂ Evolution. Advanced Materials, 2016, 28, 2427-2431.	11.1	1,156
2	Metallic Few-Layered VS ₂ Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors. Journal of the American Chemical Society, 2011, 133, 17832-17838.	6.6	1,014
3	Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation. Journal of the American Chemical Society, 2015, 137, 4119-4125.	6.6	1,004
4	Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 2014, 43, 3303.	18.7	978
5	Atomically Dispersed Iron–Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angewandte Chemie - International Edition, 2017, 56, 610-614.	7.2	950
6	Ultrathin Two-Dimensional MnO ₂ /Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors. Nano Letters, 2013, 13, 2151-2157.	4.5	818
7	Exclusive Ni–N ₄ Sites Realize Near-Unity CO Selectivity for Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 14889-14892.	6.6	725
8	Metallic Co ₄ N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 14710-14714.	7.2	684
9	Synthesis of Hematite (α-Fe2O3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors. Journal of Physical Chemistry B, 2006, 110, 17806-17812.	1.2	605
10	3D Nitrogenâ€Anionâ€Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting. Advanced Materials, 2017, 29, 1701584.	11.1	478
11	Fabrication of flexible and freestanding zinc chalcogenide single layers. Nature Communications, 2012, 3, 1057.	5.8	470
12	Facile one step method realizing scalable production of g-C ₃ N ₄ nanosheets and study of their photocatalytic H ₂ evolution activity. Journal of Materials Chemistry A, 2014, 2, 18924-18928.	5.2	405
13	Design of vanadium oxide structures with controllable electrical properties for energy applications. Chemical Society Reviews, 2013, 42, 5157.	18.7	401
14	A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,Nâ€Decorated Graphene. Angewandte Chemie - International Edition, 2017, 56, 7121-7125.	7.2	395
15	Strong oupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. Angewandte Chemie - International Edition, 2016, 55, 2488-2492.	7.2	391
16	A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature Communications, 2016, 7, 11782.	5.8	374
17	Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation. ACS Catalysis, 2018, 8, 1-7.	5.5	372
18	Giant Moisture Responsiveness of VS ₂ Ultrathin Nanosheets for Novel Touchless Positioning Interface. Advanced Materials, 2012, 24, 1969-1974.	11.1	364

#	Article	IF	CITATIONS
19	Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nature Communications, 2013, 4, 2431.	5.8	356
20	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 12465-12469.	7.2	356
21	Surface/interface nanoengineering for rechargeable Zn–air batteries. Energy and Environmental Science, 2020, 13, 1132-1153.	15.6	344
22	High-purity pyrrole-type FeN ₄ sites as a superior oxygen reduction electrocatalyst. Energy and Environmental Science, 2020, 13, 111-118.	15.6	327
23	Phaseâ€Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium. Advanced Materials, 2016, 28, 7527-7532.	11.1	307
24	Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chemical Society Reviews, 2015, 44, 637-646.	18.7	302
25	Atomically Thick Bismuth Selenide Freestanding Single Layers Achieving Enhanced Thermoelectric Energy Harvesting. Journal of the American Chemical Society, 2012, 134, 20294-20297.	6.6	279
26	Free-Standing Two-Dimensional Ru Nanosheets with High Activity toward Water Splitting. ACS Catalysis, 2016, 6, 1487-1492.	5.5	276
27	Surface Immobilization of Transition Metal Ions on Nitrogenâ€Ðoped Graphene Realizing Highâ€Efficient and Selective CO ₂ Reduction. Advanced Materials, 2018, 30, e1706617.	11.1	276
28	Hydrogen-Incorporated TiS ₂ Ultrathin Nanosheets with Ultrahigh Conductivity for Stamp-Transferrable Electrodes. Journal of the American Chemical Society, 2013, 135, 5144-5151.	6.6	273
29	Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212.	23.0	262
30	Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 2014, 6, 8359-8367.	2.8	248
31	Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 236-242.	3.0	243
32	Ultrathin Nanosheets of Vanadium Diselenide: A Metallic Twoâ€Đimensional Material with Ferromagnetic Chargeâ€Đensityâ€Wave Behavior. Angewandte Chemie - International Edition, 2013, 52, 10477-10481.	7.2	242
33	Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6635-6640.	3.3	242
34	Engineering the Electronic State of a Perovskite Electrocatalyst for Synergistically Enhanced Oxygen Evolution Reaction. Advanced Materials, 2015, 27, 5989-5994.	11.1	236
35	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angewandte Chemie, 2016, 128, 12653-12657.	1.6	233
36	Ultrathin Cobalt Oxide Layers as Electrocatalysts for Highâ€Performance Flexible Zn–Air Batteries. Advanced Materials, 2019, 31, e1807468.	11.1	227

#	Article	IF	CITATIONS
37	Spin-State Regulation of Perovskite Cobaltite to Realize Enhanced Oxygen Evolution Activity. CheM, 2017, 3, 812-821.	5.8	225
38	Regulating Waterâ€Reduction Kinetics in Cobalt Phosphide for Enhancing HER Catalytic Activity in Alkaline Solution. Advanced Materials, 2017, 29, 1606980.	11.1	220
39	Controllable Surface Reorganization Engineering on Cobalt Phosphide Nanowire Arrays for Efficient Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, 1703322.	11.1	215
40	Synthesis of New-Phased VOOH Hollow "Dandelions―and Their Application in Lithium-Ion Batteries. Advanced Materials, 2006, 18, 1727-1732.	11.1	213
41	Unraveling Metal-insulator Transition Mechanism of VO2Triggered by Tungsten Doping. Scientific Reports, 2012, 2, 466.	1.6	209
42	Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media. Nano Letters, 2017, 17, 578-583.	4.5	191
43	Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis. Accounts of Chemical Research, 2018, 51, 2857-2866.	7.6	190
44	High-Density Planar-like Fe2N6 Structure Catalyzes Efficient Oxygen Reduction. Matter, 2020, 3, 509-521.	5.0	184
45	Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving. Energy and Environmental Science, 2010, 3, 1191.	15.6	182
46	Dynamic Migration of Surface Fluorine Anions on Cobaltâ€Based Materials to Achieve Enhanced Oxygen Evolution Catalysis. Angewandte Chemie - International Edition, 2018, 57, 15471-15475.	7.2	178
47	In situ micelle–template–interface reaction route to CdS nanotubes and nanowires. Journal of Materials Chemistry, 2002, 12, 3712-3716.	6.7	176
48	Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nature Communications, 2015, 6, 8647.	5.8	172
49	Understanding the Nature of the Kinetic Process in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>VO</mml:mi><mml:mn>2</mml:mn></mml:msub>Metal-In Transition Physical Paview Letters, 2010, 105, 226405</mml:math 	sulator	171
50	Understanding Structure-Dependent Catalytic Performance of Nickel Selenides for Electrochemical Water Oxidation. ACS Catalysis, 2017, 7, 310-315.	5.5	155
51	Nearly Monodisperse CuInS ₂ Hierarchical Microarchitectures for Photocatalytic H ₂ Evolution under Visible Light. Inorganic Chemistry, 2009, 48, 4003-4009.	1.9	153
52	Enhanced Catalytic Activity in Nitrogen-Anion Modified Metallic Cobalt Disulfide Porous Nanowire Arrays for Hydrogen Evolution. ACS Catalysis, 2017, 7, 7405-7411.	5.5	152
53	Growth of Well-Aligned -MnO2 Monocrystalline Nanowires through a Coordination-Polymer-Precursor Route. Chemistry - A European Journal, 2003, 9, 1645-1651.	1.7	149
54	Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332.	11.1	145

#	Article	IF	CITATIONS
55	Hydrogen-Incorporation Stabilization of Metallic VO ₂ (R) Phase to Room Temperature, Displaying Promising Low-Temperature Thermoelectric Effect. Journal of the American Chemical Society, 2011, 133, 13798-13801.	6.6	144
56	Highly Polarized and Fast Photoresponse of Black Phosphorusâ€InSe Vertical p–n Heterojunctions. Advanced Functional Materials, 2018, 28, 1802011.	7.8	142
57	Atomically Dispersed Iron–Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angewandte Chemie, 2017, 129, 625-629.	1.6	140
58	Vibronic Superexchange in Double Perovskite Electrocatalyst for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2018, 140, 11165-11169.	6.6	138
59	Novel Flowerlike Metastable Vanadium Dioxide (B) Micronanostructures: Facile Synthesis and Application in Aqueous Lithium Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 15058-15067.	1.5	136
60	Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures. Materials Chemistry and Physics, 2006, 99, 479-486.	2.0	131
61	MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chemical Communications, 2006, , 4738.	2.2	129
62	Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts. European Journal of Inorganic Chemistry, 2006, 2006, 1643-1648.	1.0	126
63	Graphene/Sulfur Hybrid Nanosheets from a Spaceâ€Confined "Sauna―Reaction for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 5936-5942.	11.1	124
64	Insight into Electrocatalysts as Co-catalysts in Efficient Photocatalytic Hydrogen Evolution. ACS Catalysis, 2016, 6, 4253-4257.	5.5	120
65	Selected-Control Hydrothermal Synthesis of γ-ΜnO23D Nanostructures. Journal of Physical Chemistry B, 2003, 107, 13583-13587.	1.2	117
66	From Complex Chains to 1D Metal Oxides:Â A Novel Strategy to Cu2O Nanowires. Journal of Physical Chemistry B, 2003, 107, 3697-3702.	1.2	116
67	Visible Light Responsive Perovskite BiFeO ₃ Pills and Rods with Dominant {111} _c Facets. Crystal Growth and Design, 2011, 11, 1049-1053.	1.4	115
68	Solutionâ€Liquidâ€Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst. Angewandte Chemie - International Edition, 2016, 55, 1710-1713.	7.2	115
69	Acid-Assisted Exfoliation toward Metallic Sub-nanopore TaS ₂ Monolayer with High Volumetric Capacitance. Journal of the American Chemical Society, 2018, 140, 493-498.	6.6	112
70	Modulation of Metal and Insulator States in 2D Ferromagnetic VS ₂ by van der Waals Interaction Engineering. Advanced Materials, 2017, 29, 1700715.	11.1	112
71	Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: new prototype robotic motions under infrared-light stimuli. Journal of Materials Chemistry, 2011, 21, 18584.	6.7	111
72	Recent Advances on the Modulation of Electrocatalysts Based on Transition Metal Nitrides for the		111

Rechargeable Zn-Air Battery. , 2020, 2, 1423-1434.

#	Article	IF	CITATIONS
73	Aqueous synthesis of mesostructured BiVO4 quantum tubes with excellent dual response to visible light and temperature. Nano Research, 2010, 3, 620-631.	5.8	109
74	Very Large-Sized Transition Metal Dichalcogenides Monolayers from Fast Exfoliation by Manual Shaking. Journal of the American Chemical Society, 2017, 139, 9019-9025.	6.6	109
75	New-phase VO2 micro/nanostructures: investigation of phase transformation and magnetic property. New Journal of Chemistry, 2012, 36, 619-625.	1.4	108
76	Direct hydrothermal synthesis of monoclinic VO2(M) single-domain nanorods on large scale displaying magnetocaloric effect. Journal of Materials Chemistry, 2011, 21, 4509.	6.7	106
77	Nanopore Confinement of Electrocatalysts Optimizing Triple Transport for an Ultrahighâ€Powerâ€Đensity Zinc–Air Fuel Cell with Robust Stability. Advanced Materials, 2020, 32, e2003251.	11.1	104
78	Synthetic paramontroseite VO2 with good aqueous lithium–ion battery performance. Chemical Communications, 2008, , 3891.	2.2	102
79	Surface Engineering Protocol To Obtain an Atomically Dispersed Pt/CeO ₂ Catalyst with High Activity and Stability for CO Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14054-14062.	3.2	102
80	Double-Exchange Effect in Two-Dimensional MnO ₂ Nanomaterials. Journal of the American Chemical Society, 2017, 139, 5242-5248.	6.6	94
81	Shape Evolution of New-Phased Lepidocrocite VOOH from Single-Shelled to Double-Shelled Hollow Nanospheres on the Basis of Programmed Reaction-Temperature Strategy. Inorganic Chemistry, 2009, 48, 6044-6054.	1.9	92
82	Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nature Catalysis, 2021, 4, 202-211.	16.1	89
83	Fabrication of Micrometer-Scaled Hierarchical Tubular Structures of CuS Assembled by Nanoflake-built Microspheres Using an In Situ Formed Cu(I) Complex as a Self-Sacrificed Template. Crystal Growth and Design, 2007, 7, 1256-1261.	1.4	88
84	High Phase Purity of Largeâ€6ized 1T′â€MoS ₂ Monolayers with 2D Superconductivity. Advanced Materials, 2019, 31, e1900568.	11.1	88
85	Ultrahigh Infrared Photoresponse from Core–Shell Singleâ€Domainâ€VO ₂ /V ₂ O ₅ Heterostructure in Nanobeam. Advanced Functional Materials, 2014, 24, 1821-1830.	7.8	87
86	Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature. Chemical Communications, 2009, , 4542.	2.2	86
87	Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	86
88	Hexagonal Cu2SnS3 with metallic character: Another category of conducting sulfides. Applied Physics Letters, 2007, 91, .	1.5	85
89	Ultrathin nanosheets of feroxyhyte: a new two-dimensional material with robust ferromagnetic behavior. Chemical Science, 2014, 5, 2251-2255.	3.7	85
90	Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nature Communications, 2016, 7, 11210.	5.8	85

#	Article	IF	CITATIONS
91	New Vanadium Oxide Nanostructures: Controlled Synthesis and Their Smart Electrical Switching Properties. Advanced Materials, 2010, 22, 1972-1976.	11.1	81
92	Surface Nitrogen-Injection Engineering for High Formation Rate of CO ₂ Reduction to Formate. Nano Letters, 2020, 20, 6097-6103.	4.5	71
93	Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. Journal of Power Sources, 2011, 196, 8644-8650.	4.0	70
94	Largeâ€Scale Synthesis of Titanate and Anatase Tubular Hierarchitectures. Small, 2007, 3, 1518-1522.	5.2	69
95	Spatially-confined lithiation–delithiation in highly dense nanocomposite anodes towards advanced lithium-ion batteries. Energy and Environmental Science, 2015, 8, 1471-1479.	15.6	69
96	Atomically Thin Two-Dimensional Solids: An Emerging Platform for CO ₂ Electroreduction. ACS Energy Letters, 2018, 3, 624-633.	8.8	68
97	New aspects of size-dependent metal-insulator transition in synthetic single-domain monoclinic vanadium dioxide nanocrystals. Nanoscale, 2011, 3, 4394.	2.8	67
98	Twoâ€Dimensional Tellurium Nanosheets Exhibiting an Anomalous Switchable Photoresponse with Thickness Dependence. Angewandte Chemie - International Edition, 2018, 57, 13533-13537.	7.2	67
99	A novel approach to carbon hollow spheres and vessels from CCl4 at low temperaturesElectronic supplementary information (ESI) available: mass and GC spectra. See http://www.rsc.org/suppdata/cc/b211996j/. Chemical Communications, 2003, , 904-905.	2.2	66
100	Necklace-like Hollow Carbon Nanospheres from the Pentagon-Including Reactants:Â Synthesis and Electrochemical Properties. Inorganic Chemistry, 2006, 45, 8543-8550.	1.9	66
101	Newâ€Phased Metastable V ₂ O ₃ Porous Urchinlike Micronanostructures: Facile Synthesis and Application in Aqueous Lithium Ion Batteries. Chemistry - A European Journal, 2011, 17, 384-391.	1.7	66
102	Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior. Physical Chemistry Chemical Physics, 2012, 14, 4810.	1.3	65
103	Interface Engineering in Twoâ€Dimensional Heterostructures: Towards an Advanced Catalyst for Ullmann Couplings. Angewandte Chemie - International Edition, 2016, 55, 1704-1709.	7.2	65
104	Halfâ€Metallic Behavior in 2D Transition Metal Dichalcogenides Nanosheets by Dualâ€Nativeâ€Đefects Engineering. Advanced Materials, 2017, 29, 1703123.	11.1	65
105	The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties. Nanoscale, 2017, 9, 6643-6648.	2.8	63
106	Hydrogen dangling bonds induce ferromagnetism in two-dimensional metal-free graphitic-C ₃ N ₄ nanosheets. Chemical Science, 2015, 6, 283-287.	3.7	62
107	Ferromagnetism in 2D Vanadium Diselenide. ACS Nano, 2021, 15, 16236-16241.	7.3	61
108	A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,Nâ€Đecorated Graphene. Angewandte Chemie, 2017, 129, 7227-7231.	1.6	59

#	Article	IF	CITATIONS
109	Enhanced oxygen evolution reaction of metallic nickel phosphide nanosheets by surface modification. Inorganic Chemistry Frontiers, 2016, 3, 1021-1027.	3.0	58
110	The Hydric Effect in Inorganic Nanomaterials for Nanoelectronics and Energy Applications. Advanced Materials, 2015, 27, 3850-3867.	11.1	55
111	Dual Modulation via Electrochemical Reduction Activiation on Electrocatalysts for Enhanced Oxygen Evolution Reaction. ACS Energy Letters, 2019, 4, 423-429.	8.8	55
112	Spherical CoS ₂ <i>@</i> carbon core–shell nanoparticles: one-pot synthesis and Li storage property. Nanotechnology, 2008, 19, 075602.	1.3	54
113	Molecule-Confined Engineering toward Superconductivity and Ferromagnetism in Two-Dimensional Superlattice. Journal of the American Chemical Society, 2017, 139, 16398-16404.	6.6	54
114	Disorder Enhanced Superconductivity toward TaS ₂ Monolayer. ACS Nano, 2018, 12, 9461-9466.	7.3	54
115	Direct Confinedâ€6pace Combustion Forming Monoclinic Vanadium Dioxides. Angewandte Chemie - International Edition, 2010, 49, 134-137.	7.2	53
116	Strong oupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. Angewandte Chemie, 2016, 128, 2534-2538.	1.6	52
117	From polymer–metal complex framework to 3D architectures: growth, characterization and formation mechanism of micrometer-sized α-NiS. New Journal of Chemistry, 2003, 27, 1331-1335.	1.4	51
118	Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors. Nano Research, 2015, 8, 193-200.	5.8	50
119	Regulating the Electrical Behaviors of 2D Inorganic Nanomaterials for Energy Applications. Small, 2015, 11, 654-666.	5.2	50
120	Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nature Chemistry, 2021, 13, 1235-1240.	6.6	50
121	Ultrafast Solid-State Transformation Pathway from New-Phased Goethite VOOH to Paramontroseite VO ₂ to Rutile VO ₂ (R). Journal of Physical Chemistry C, 2011, 115, 791-799.	1.5	49
122	Highly Efficient Photothermal Effect by Atomic-Thickness Confinement in Two-Dimensional ZrNCl Nanosheets. ACS Nano, 2015, 9, 1683-1691.	7.3	48
123	Structural Phase Transition of Multilayer VSe ₂ . ACS Applied Materials & Interfaces, 2020, 12, 25143-25149.	4.0	47
124	Synthetic Haggite V ₄ O ₆ (OH) ₄ Nanobelts: Oxyhydroxide as a New Catalog of Smart Electrical Switch Materials. Journal of the American Chemical Society, 2009, 131, 7218-7219.	6.6	46
125	Environmentally Friendly γâ€MnO ₂ Hexagonâ€Based Nanoarchitectures: Structural Understanding and Their Energyâ€Saving Applications. Chemistry - A European Journal, 2009, 15, 492-500.	1.7	45
126	Controlling phase and morphology of inorganic nanostructures originated from the internal crystal structure. Chemical Communications, 2009, , 5943.	2.2	44

#	Article	IF	CITATIONS
127	Surface-adsorbed ions on TiO2 nanosheets for selective photocatalytic CO2 reduction. Nano Research, 2018, 11, 3362-3370.	5.8	44
128	Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titanium-oxide incorporation for enhanced photocatalytic activity. Chemical Science, 2016, 7, 1462-1467.	3.7	41
129	Large Negative Magnetoresistance Induced by Anionic Solid Solutions in Two-Dimensional Spin-Frustrated Transition Metal Chalcogenides. Physical Review Letters, 2014, 113, 157202.	2.9	39
130	Hydrogen Treatment for Superparamagnetic VO ₂ Nanowires with Large Roomâ€Temperature Magnetoresistance. Angewandte Chemie - International Edition, 2016, 55, 8018-8022.	7.2	37
131	Design of nanoarchitectured electrode materials applied in new-generation rechargeable lithium ion batteries. Dalton Transactions, 2007, , 5235.	1.6	36
132	<i>C</i> â€oriented and {010} Facets Exposed BiVO ₄ Nanowall Films: Templateâ€Free Fabrication and their Enhanced Photoelectrochemical Properties. Chemistry - an Asian Journal, 2010, 5, 2515-2523.	1.7	35
133	Tailoring Electronic Structure of Atomically Dispersed Metal–N ₃ S ₁ Active Sites for Highly Efficient Oxygen Reduction Catalysis. , 2019, 1, 139-146.		34
134	Two-Dimensional Hierarchical Fe–N–C Electrocatalyst for Zn-Air Batteries with Ultrahigh Specific Capacity. , 2020, 2, 35-41.		34
135	Indium nitride from indium iodide at low temperatures: synthesis and their optical properties. New Journal of Chemistry, 2005, 29, 1610.	1.4	33
136	Selected-control solution-phase route to multiple-dendritic and cuboidal structures of PbSe. Journal of Solid State Chemistry, 2006, 179, 56-61.	1.4	33
137	Room‶emperature Ferromagnetic Silver Vanadium Oxide (Ag _{1.2} V ₃ O ₈): A Magnetic Semiconductor Nanoring Structure. Advanced Functional Materials, 2010, 20, 3666-3672.	7.8	33
138	Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeam. Nature Communications, 2017, 8, 15561.	5.8	33
139	Highly depressed temperature-induced metal-insulator transition in synthetic monodisperse 10-nm V2O3 pseudocubes enclosed by {012} facets. Nanoscale, 2011, 3, 2609.	2.8	32
140	Epitaxial Growth of Ultrathin Highly Crystalline Pt–Ni Nanostructure on a Metal Carbide Template for Efficient Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2109188.	11.1	30
141	Complexing-reagent assisted synthesis of α-Fe and γ-Fe2O3 nanowires under mild conditions. New Journal of Chemistry, 2003, 27, 588.	1.4	27
142	Facile solvent-free synthesis of pure-phased AlN nanowhiskers at a low temperature. Journal of Solid State Chemistry, 2004, 177, 3522-3528.	1.4	27
143	Manganous oxide nanoparticles encapsulated in few-layer carbon as an efficient electrocatalyst for oxygen reduction in alkaline media. Journal of Materials Chemistry A, 2016, 4, 11775-11781.	5.2	27
144	Modulation of pore-size in N, S-codoped carbon/Co9S8 hybrid for a stronger O2 affinity toward rechargable zinc-air battery. Nano Energy, 2022, 92, 106750.	8.2	27

#	Article	IF	CITATIONS
145	Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation. Aggregate, 2021, 2, e30.	5.2	26
146	First Experimental Identification of BiVO ₄ ·0.4H ₂ O and Its Evolution Mechanism to Final Monoclinic BiVO ₄ . Crystal Growth and Design, 2010, 10, 602-607.	1.4	25
147	In situ unravelling structural modulation across the charge-density-wave transition in vanadium disulfide. Physical Chemistry Chemical Physics, 2015, 17, 13333-13339.	1.3	24
148	Solution Processing for Lateral Transition-Metal Dichalcogenides Homojunction from Polymorphic Crystal. Journal of the American Chemical Society, 2019, 141, 592-598.	6.6	24
149	Construction of PbSe Hierarchical Superstructures via an Alkaline Etching Method. Crystal Growth and Design, 2008, 8, 2933-2937.	1.4	23
150	Highly entangled K0.5V2O5 superlong nanobelt membranes for flexible nonvolatile memory devices. Journal of Materials Chemistry, 2012, 22, 18214.	6.7	22
151	High-surface-area titanium nitride nanosheets as zinc anode coating for dendrite-free rechargeable aqueous batteries. Science China Materials, 2022, 65, 1771-1778.	3.5	21
152	Macroscaled mesoporous calcium carbonate tetragonal prisms: top-down solid-phase fabrication and applications of phase-change material support matrices. CrystEngComm, 2010, 12, 3571.	1.3	20
153	Optimal coordination-site exposure engineering in porous platinum for outstanding oxygen reduction performance. Chemical Science, 2019, 10, 5589-5595.	3.7	20
154	Sonochemical synthesis of nanostructured VOPO4·Â2H2O/carbon nanotube composites with improved lithium ion battery performance. Journal of Nanoparticle Research, 2010, 12, 417-427.	0.8	19
155	Surface etching induced ultrathin sandwich structure realizing enhanced photocatalytic activity. Science China Chemistry, 2018, 61, 1572-1580.	4.2	19
156	Electron Transport in Low Dimensional Solids: A Surface Chemistry Perspective. Journal of the American Chemical Society, 2019, 141, 723-732.	6.6	19
157	Fast Lithium Ion Conductivity in Layered (Li–Ag)CrS ₂ . Journal of the American Chemical Society, 2020, 142, 18645-18651.	6.6	18
158	Facile synthesis and optical property of SnO2 flower-like architectures. Journal of Nanoparticle Research, 2006, 8, 1065-1069.	0.8	17
159	New phase hollandite-type VOOH quadrangular nanorods: a new smart electrical switch material. Chemical Communications, 2010, 46, 1845-1847.	2.2	17
160	Solution‣iquidâ€Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst. Angewandte Chemie, 2016, 128, 1742-1745.	1.6	17
161	Ultrathin Van der Waals Antiferromagnet CrTe ₃ for Fabrication of Inâ€Plane CrTe ₃ /CrTe ₂ Monolayer Magnetic Heterostructures. Advanced Materials, 2022, 34, e2200236.	11.1	17
162	Superparamagnetic Reduced Graphene Oxide with Large Magnetoresistance: A Surface Modulation Strategy. Angewandte Chemie - International Edition, 2016, 55, 3176-3180.	7.2	16

#	Article	IF	CITATIONS
163	Freestanding Cubic ZrN Single-Crystalline Films with Two-Dimensional Superconductivity. Journal of the American Chemical Society, 2019, 141, 10183-10187.	6.6	16
164	Synthesis of Nitrogen-Doped Carbon Nanostructures by the Reactions of Small Molecule Carbon Halides with Sodium Azide. Journal of Physical Chemistry B, 2005, 109, 2597-2604.	1.2	15
165	Moisture-triggered actuator and detector with high-performance: interface engineering of graphene oxide/ethyl cellulose. Science China Materials, 2018, 61, 1291-1296.	3.5	14
166	Host–Guest Intercalation Chemistry for the Synthesis and Modification of Twoâ€Đimensional Transition Metal Dichalcogenides. Advanced Materials, 2022, 34, e2200425.	11.1	14
167	Synthetic Potassium Vanadium Oxide K2V6O16·1.5H2O Superlong Nanobelts: A 1D Room-Temperature Ferromagnetic Semiconductor. European Journal of Inorganic Chemistry, 2013, 2013, 3497-3505.	1.0	13
168	Hierarchical palladium catalyst for highly active and stable water oxidation in acidic media. National Science Review, 2023, 10, .	4.6	12
169	Sphere-To-Tube Transition toward Nanotube Formation: A Universal Route by Inverse Plateau–Rayleigh Instability. ACS Nano, 2017, 11, 2928-2933.	7.3	11
170	Dynamic Migration of Surface Fluorine Anions on Cobaltâ€Based Materials to Achieve Enhanced Oxygen Evolution Catalysis. Angewandte Chemie, 2018, 130, 15697-15701.	1.6	11
171	Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy. Frontiers of Physics, 2018, 13, 1.	2.4	11
172	Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation. Nano Research, 2019, 12, 2296-2301.	5.8	11
173	Local structure engineering for active sites in fuel cell electrocatalysts. Science China Chemistry, 2020, 63, 1543-1556.	4.2	11
174	Self-assembly of rutile (α-TiO2) nanoclusters into nanorods in microemulsions at low temperature and their photocatalytic performance. Journal of Nanoparticle Research, 2007, 9, 1081-1086.	0.8	10
175	Bamboolike carbon nitride nanotubes (C9N5H3): Atomic-scale construction, synthesis and lithium battery applications. Applied Physics Letters, 2007, 90, 113116.	1.5	9
176	Superparamagnetic Reduced Graphene Oxide with Large Magnetoresistance: A Surface Modulation Strategy. Angewandte Chemie, 2016, 128, 3228-3232.	1.6	9
177	Intercalation-assisted Exfoliation Strategy for Two-dimensional Materials Preparation. Chemical Research in Chinese Universities, 2020, 36, 518-524.	1.3	9
178	Quantum Griffiths Singularity in a Layered Superconducting Organic–Inorganic Hybrid Superlattice. , 2021, 3, 210-216.		9
179	Heterostructures with ZnSe Sheaths Coating on Carbon Submicrotubes:Â Preparation, Characterization, and Formation Mechanism. Journal of Physical Chemistry B, 2006, 110, 14186-14191.	1.2	8
180	β-PbO2 hollow nanostructures from the complex precursor: A self-produced intermediate template route. Microporous and Mesoporous Materials, 2006, 89, 300-305.	2.2	7

#	Article	IF	CITATIONS
181	Room-temperature large magnetic-dielectric coupling in new phase anatase VTiO4. Chemical Communications, 2013, 49, 10462.	2.2	7
182	Large Scale Fabrication of NiS Hollow Spheres with Controllable Diameter Sizes. Chemistry Letters, 2007, 36, 1252-1253.	0.7	6
183	A simple solution route to assemble three-dimensional (3D) carbon nanotube networks. Science Bulletin, 2009, 54, 1894-1900.	4.3	6
184	Hydrogen Treatment for Superparamagnetic VO ₂ Nanowires with Large Roomâ€Temperature Magnetoresistance. Angewandte Chemie, 2016, 128, 8150-8154.	1.6	6
185	Surface microenvironment optimization―induced robust oxygen reduction for neutral zincâ€∎ir batteries. Natural Sciences, 2021, 1, e20210005.	1.0	6
186	A New Synergic-Assembly Strategy Towards Three-Dimensional (3D) Hollow Nanoarchitectures. Journal of Nanoscience and Nanotechnology, 2008, 8, 6208-6222.	0.9	5
187	Growth of curved crystals: competition between topological defect nucleation and boundary branching. Soft Matter, 2019, 15, 4391-4400.	1.2	5
188	Surface/Interface Chemistry Engineering of Correlatedâ€Electron Materials: From Conducting Solids, Phase Transitions to Externalâ€Field Response. Advanced Science, 2021, 8, 2002807.	5.6	5
189	Boosting the electrochromic performance of TiO2 nanowire film via successively evolving surface structure. Science China Chemistry, 2021, 64, 745-752.	4.2	5
190	Ultralow In-Plane Thermal Conductivity in 2D Magnetic Mosaic Superlattices for Enhanced Thermoelectric Performance. ACS Nano, 2022, 16, 11152-11160.	7.3	4
191	Twoâ€Dimensional Tellurium Nanosheets Exhibiting an Anomalous Switchable Photoresponse with Thickness Dependence. Angewandte Chemie, 2018, 130, 13721-13725.	1.6	3
192	Spin-Dependent Transport at 2D Solids: From Nonmagnetic Layers to Ferromagnetic van der Waals Structures. Journal of Physical Chemistry Letters, 2021, 12, 9730-9740.	2.1	3
193	Ir Detectors: Ultrahigh Infrared Photoresponse from Core-Shell Single-Domain-VO2/V2O5Heterostructure in Nanobeam (Adv. Funct. Mater. 13/2014). Advanced Functional Materials, 2014, 24, 1820-1820.	7.8	2
194	Growth of Well-Aligned Î ³ -MnO2 Monocrystalline Nanowires Through a Coordination-Polymer-Precursor Route ChemInform, 2003, 34, no.	0.1	1
195	2D Nanomaterials: Regulating the Electrical Behaviors of 2D Inorganic Nanomaterials for Energy Applications (Small 6/2015). Small, 2015, 11, 653-653.	5.2	1
196	Interface Engineering in Twoâ€Dimensional Heterostructures: Towards an Advanced Catalyst for Ullmann Couplings. Angewandte Chemie, 2016, 128, 1736-1741.	1.6	1
197	界é¢ç¦»åè°f控增弲二维å±,状氢氧åŒ−物纳米片的隔çf性èf½. Science China Chemi: 	stry 4 2 022,	. 65 1, 898-904 -
198	Preface: Special topic on electrocatalysis & energy science. Science China Chemistry, 2020, 63, 1515-1516.	4.2	0

#	Article	IF	CITATIONS
199	A new synergic-assembly strategy towards three-dimensional (3D) hollow nanoarchitectures. Journal of Nanoscience and Nanotechnology, 2008, 8, 6208-22.	0.9	0
200	Heat Conduction Behavior of Two-Dimensional Nanomaterials and Their Interface Regulation [※] . Acta Chimica Sinica, 2022, 80, 839.	0.5	0