List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/450999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inter-annual variation in prevalence of Borrelia burgdorferi sensu stricto and Anaplasma phagocytophilum in host-seeking Ixodes scapularis (Acari: Ixodidae) at long-term surveillance sites in the upper midwestern United States: Implications for public health practice. Ticks and Tick-borne Diseases, 2022, 13, 101886.	1.1	11
2	A Novel Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Yersinia pestis. Frontiers in Microbiology, 2022, 13, 863142.	1.5	1
3	Knowledge, attitudes, and behaviors regarding tick-borne disease prevention in Lyme disease-endemic areas of the Upper Midwest, United States. Ticks and Tick-borne Diseases, 2022, 13, 101925.	1.1	16
4	Reported County-Level Distribution of Seven Human Pathogens Detected in Host-Seeking <i>Ixodes scapularis</i> and <i>Ixodes pacificus</i> (Acari: Ixodidae) in the Contiguous United States. Journal of Medical Entomology, 2022, 59, 1328-1335.	0.9	22
5	Range Expansion of Native and Invasive Ticks: A Looming Public Health Threat. Journal of Infectious Diseases, 2022, 226, 370-373.	1.9	5
6	Predicting distributions of blacklegged ticks (Ixodes scapularis), Lyme disease spirochetes (Borrelia) Tj ETQq0 C Tick-borne Diseases, 2022, 13, 102000.	0 rgBT /Ov 1.1	verlock 10 Tf : 8
7	A comparison of horizontal and transovarial transmission efficiency of Borrelia miyamotoi by Ixodes scapularis. Ticks and Tick-borne Diseases, 2022, 13, 102003.	1.1	9
8	Benefits and Drawbacks of Citizen Science to Complement Traditional Data Gathering Approaches for Medically Important Hard Ticks (Acari: Ixodidae) in the United States. Journal of Medical Entomology, 2021, 58, 1-9.	0.9	34
9	Tick and Tickborne Pathogen Surveillance as a Public Health Tool in the United States. Journal of Medical Entomology, 2021, 58, 1490-1502.	0.9	117
10	A Survey of Tick Surveillance and Control Practices in the United States. Journal of Medical Entomology, 2021, 58, 1503-1512.	0.9	39
11	Prevalence of single and coinfections of human pathogens in Ixodes ticks from five geographical regions in the United States, 2013–2019. Ticks and Tick-borne Diseases, 2021, 12, 101637.	1.1	41
12	Reported County-Level Distribution of Lyme Disease Spirochetes, <i>Borrelia burgdorferi sensu stricto</i> and <i>Borrelia mayonii</i> (Spirochaetales: Spirochaetaceae), in Host-Seeking <i>Ixodes scapularis</i> and <i>Ixodes pacificus</i> Ticks (Acari: Ixodidae) in the Contiguous United States. lournal of Medical Entomology, 2021, 58, 1219-1233.	0.9	28
13	Detection of Genetic Variability in <i>Borrelia miyamotoi</i> (Spirochaetales: Spirochaetaceae) Between and Within the Eastern and Western United States. Journal of Medical Entomology, 2021, 58, 2154-2160.	0.9	9
14	The Rise of Ticks and Tickborne Diseases in the United States—Introduction. Journal of Medical Entomology, 2021, 58, 1487-1489.	0.9	17
15	Epidemiology, Ecology and Prevention of Plague in the West Nile Region of Uganda: The Value of Long-Term Field Studies. American Journal of Tropical Medicine and Hygiene, 2021, 105, 18-23.	0.6	4
16	Modeling future climate suitability for the western blacklegged tick, Ixodes pacificus, in California with an emphasis on land access and ownership. Ticks and Tick-borne Diseases, 2021, 12, 101789.	1.1	9
17	Failure of the Asian longhorned tick, Haemaphysalis longicornis, to serve as an experimental vector of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto. Ticks and Tick-borne Diseases, 2020, 11, 101311.	1.1	48
18	Reported County-Level Distribution of the American Dog Tick (Acari: Ixodidae) in the Contiguous United States. Journal of Medical Entomology, 2020, 57, 131-155.	0.9	25

#	Article	IF	CITATIONS
19	An Evaluation of the Flea Index as a Predictor of Plague Epizootics in the West Nile Region of Uganda. Journal of Medical Entomology, 2020, 57, 893-900.	0.9	11
20	Experimental Demonstration of Reservoir Competence of the White-Footed Mouse, Peromyscus leucopus (Rodentia: Cricetidae), for the Lyme Disease Spirochete, Borrelia mayonii (Spirochaetales:) Tj ETQq0 0	0 r gB∮ /Ov	erl oo k 10 Tf 5
21	Evaluation of a novel multiplex PCR amplicon sequencing assay for detection of human pathogens in Ixodes ticks. Ticks and Tick-borne Diseases, 2020, 11, 101504.	1.1	9
22	Pentaplex realâ€ŧime PCR for differential detection of Yersinia pestis and Y . pseudotuberculosis and application for testing fleas collected during plague epizootics. MicrobiologyOpen, 2020, 9, e1105.	1.2	10
23	The changing triad of plague in Uganda: invasive black rats(Rattus rattus), indigenous small mammals, and their fleas. Journal of Vector Ecology, 2020, 45, 333-355.	0.5	4
24	LYMESIM 2.0: An Updated Simulation of Blacklegged Tick (Acari: Ixodidae) Population Dynamics and Enzootic Transmission of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae). Journal of Medical Entomology, 2020, 57, 715-727.	0.9	15
25	Challenges in Predicting Lyme Disease Risk. JAMA Network Open, 2020, 3, e200328.	2.8	15
26	Ecology and Epidemiology of Tickborne Pathogens, Washington, USA, 2011–2016. Emerging Infectious Diseases, 2020, 26, 648-657.	2.0	14
27	An immunocompromised mouse model to infect Ixodes scapularis ticks with the relapsing fever spirochete, Borrelia miyamotoi. Ticks and Tick-borne Diseases, 2019, 10, 352-359.	1.1	15
28	Predicting spatiotemporal patterns of Lyme disease incidence from passively collected surveillance data for Borrelia burgdorferi sensu lato-infected Ixodes scapularis ticks. Ticks and Tick-borne Diseases, 2019, 10, 970-980.	1.1	27
29	Prevalence and Geographic Distribution of Borrelia miyamotoi in Host-Seeking Ixodes pacificus (Acari:) Tj ETQq1	1 0,78431	l4 rgBT /Over
30	A molecular algorithm to detect and differentiate human pathogens infecting Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae). Ticks and Tick-borne Diseases, 2018, 9, 390-403.	1.1	29
31	The Blacklegged Tick, Ixodes scapularis : An Increasing Public Health Concern. Trends in Parasitology, 2018, 34, 295-309.	1.5	247
32	Modeling Climate Suitability of the Western Blacklegged Tick in California. Journal of Medical Entomology, 2018, 55, 1133-1142.	0.9	18
33	Evaluating acarological risk for exposure to Ixodes scapularis and Ixodes scapularis-borne pathogens in recreational and residential settings in Washington County, Minnesota. Ticks and Tick-borne Diseases, 2018, 9, 340-348.	1.1	28
34	Heartland Virus Epidemiology, Vector Association, and Disease Potential. Viruses, 2018, 10, 498.	1.5	83
35	An Evaluation of Removal Trapping to Control Rodents Inside Homes in a Plague-Endemic Region of Rural Northwestern Uganda. Vector-Borne and Zoonotic Diseases, 2018, 18, 458-463.	0.6	11
36	Contact Irritancy and Toxicity of Permethrin-Treated Clothing for Ixodes scapularis, Amblyomma americanum, and Dermacentor variabilis Ticks (Acari: Ixodidae). Journal of Medical Entomology, 2018, 55, 1217-1224.	0.9	12

#	Article	IF	CITATIONS
37	Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari:) Tj ETQq1 1 0.784	4314 rgBT 1.1	/Qyerlock 1(
38	Multistate Infestation with the Exotic Disease–Vector Tick <i>Haemaphysalis longicornis</i> — United States, August 2017–September 2018. Morbidity and Mortality Weekly Report, 2018, 67, 1310-1313.	9.0	150
39	Rat Fall Surveillance Coupled with Vector Control and Community Education as a Plague Prevention Strategy in the West Nile Region, Uganda. American Journal of Tropical Medicine and Hygiene, 2018, 98, 238-247.	0.6	7
40	An Acarological Risk Model Predicting the Density and Distribution of Host-Seeking Ixodes scapularis Nymphs in Minnesota. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1671-1682.	0.6	18
41	Prevalence and Diversity of Tick-Borne Pathogens in Nymphal <i>Ixodes scapularis</i> (Acari: Ixodidae) in Eastern National Parks. Journal of Medical Entomology, 2017, 54, tjw213.	0.9	33
42	Host-Seeking Phenology ofIxodes pacificus(Acari: Ixodidae) Nymphs in Northwestern California in Relation to Calendar Week, Woodland Type, and Weather Conditions. Journal of Medical Entomology, 2017, 54, 125-131.	0.9	3
43	Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health. ILAR Journal, 2017, 58, 319-335.	1.8	203
44	Isolation of the Lyme Disease Spirochete Borrelia mayonii From Naturally Infected Rodents in Minnesota. Journal of Medical Entomology, 2017, 54, 1088-1092.	0.9	48
45	Response: The Geographic Distribution of Ixodes scapularis (Acari: Ixodidae) Revisited: The Importance of Assumptions About Error Balance. Journal of Medical Entomology, 2017, 54, 1104-1106.	0.9	12
46	Comparison of Zoonotic Bacterial Agents in Fleas Collected from Small Mammals or Host-Seeking Fleas from a Ugandan Region Where Plague Is Endemic. MSphere, 2017, 2, .	1.3	13
47	Paired real-time PCR assays for detection of Borrelia miyamotoi in North American Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae). Ticks and Tick-borne Diseases, 2016, 7, 1230-1235.	1.1	20
48	Modeling the Geographic Distribution of <i>lxodes scapularis</i> and <i>lxodes pacificus</i> (Acari:) Tj ETQq0 0 0 r	gBT /Overl	၀၄ <u>န</u> 10 Tf 50
49	Infection Prevalence, Bacterial Loads, and Transmission Efficiency in <i>Oropsylla montana</i> (Siphonaptera: Ceratophyllidae) One Day After Exposure to Varying Concentrations of <i>Yersinia pestis</i> in Blood. Journal of Medical Entomology, 2016, 53, 674-680.	0.9	14
50	Critical Evaluation of the Linkage Between Tick-Based Risk Measures and the Occurrence of Lyme Disease Cases: Table 1 Journal of Medical Entomology, 2016, 53, 1050-1062.	0.9	75
51	County-Scale Distribution of <i>Ixodes scapularis</i> and <i>Ixodes pacificus</i> (Acari: Ixodidae) in the Continental United States. Journal of Medical Entomology, 2016, 53, 349-386.	0.9	321
52	Detecting Burrowing Owl Bloodmeals inPulex irritans(Siphonaptera: Pulicidae). Journal of Medical Entomology, 2016, 53, 446-450.	0.9	7
53	Linkages of Weather and Climate With <i>Ixodes scapularis</i> and <i>Ixodes pacificus</i> (Acari:) Tj ETQq1 1 0.78 Journal of Medical Entomology, 2016, 53, 250-261.	4314 rgB1 0.9	「 /Overlock 1 162
54	Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda. PLoS Neglected Tropical Diseases, 2016, 10, e0004360.	1.3	18

#	Article	IF	CITATIONS
55	Expanding Range of Amblyomma americanum and Simultaneous Changes in the Epidemiology of Spotted Fever Group Rickettsiosis in the United States. American Journal of Tropical Medicine and Hygiene, 2016, 94, 35-42.	0.6	104
56	The Role of Early-Phase Transmission in the Spread of <i>Yersinia pestis</i> . Journal of Medical Entomology, 2015, 52, 1183-1192.	0.9	44
57	Flea-Associated Bacterial Communities across an Environmental Transect in a Plague-Endemic Region of Uganda. PLoS ONE, 2015, 10, e0141057.	1.1	16
58	Climate change influences on the annual onset of Lyme disease in the United States. Ticks and Tick-borne Diseases, 2015, 6, 615-622.	1.1	50
59	Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp. as key hosts in Yersinia pestis transmission. Parasites and Vectors, 2015, 8, 11.	1.0	33
60	Modeling the Present and Future Geographic Distribution of the Lone Star Tick, Amblyomma americanum (Ixodida: Ixodidae), in the Continental United States. American Journal of Tropical Medicine and Hygiene, 2015, 93, 875-890.	0.6	110
61	Borrelia burgdorferi Sensu Lato Spirochetes in Wild Birds in Northwestern California: Associations with Ecological Factors, Bird Behavior and Tick Infestation. PLoS ONE, 2015, 10, e0118146.	1.1	58
62	Identification of Risk Factors for Plague in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2014, 90, 1047-1058.	0.6	21
63	Use of Insecticide Delivery Tubes for Controlling Rodent-Associated Fleas in a Plague Endemic Region of West Nile, Uganda. Journal of Medical Entomology, 2014, 51, 1254-1263.	0.9	8
64	Spatial Distribution of Counties in the Continental United States With Records of Occurrence of <i>Amblyomma americanum</i> (Ixodida: Ixodidae). Journal of Medical Entomology, 2014, 51, 342-351.	0.9	121
65	Evaluation of the Effect of Host Immune Status on Short-TermYersinia pestisInfection in Fleas With Implications for the Enzootic Host Model for Maintenance ofY. pestisDuring Interepizootic Periods. Journal of Medical Entomology, 2014, 51, 1079-1086.	0.9	9
66	Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae). Microbiology (United Kingdom), 2014, 160, 2517-2525.	0.7	23
67	Meteorological Influences on the Seasonality of Lyme Disease in the United States. American Journal of Tropical Medicine and Hygiene, 2014, 90, 486-496.	0.6	53
68	What is the Risk for Exposure to Vector-Borne Pathogens in United States National Parks?. Journal of Medical Entomology, 2013, 50, 221-230.	0.9	18
69	Evidence that rodent control strategies ought to be improved to enhance food security and reduce the risk of rodent-borne illnesses within subsistence farming villages in the plague-endemic West Nile region, Uganda. International Journal of Pest Management, 2013, 59, 259-270.	0.9	20
70	Blood Meal Identification in Off-Host Cat Fleas (Ctenocephalides felis) from a Plague-Endemic Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2013, 88, 381-389.	0.6	13
71	A Regional Climatography of West Nile, Uganda, to Support Human Plague Modeling. Journal of Applied Meteorology and Climatology, 2012, 51, 1201-1221.	0.6	23
72	What Do We Need to Know About Disease Ecology to Prevent Lyme Disease in the Northeastern United States?: Table 1 Journal of Medical Entomology, 2012, 49, 11-22.	0.9	61

#	Article	IF	CITATIONS
73	Combining Real-Time Polymerase Chain Reaction Using SYBR Green I Detection and Sequencing to Identify Vertebrate Bloodmeals in Fleas. Journal of Medical Entomology, 2012, 49, 1442-1452.	0.9	13
74	Efficacy of Indoor Residual Spraying Using Lambda-Cyhalothrin for Controlling Nontarget Vector Fleas (Siphonaptera) on Commensal Rats in a Plague Endemic Region of Northwestern Uganda. Journal of Medical Entomology, 2012, 49, 1027-1034.	0.9	15
75	Geographic Variation in the Relationship between Human Lyme Disease Incidence and Density of Infected Host-Seeking Ixodes scapularis Nymphs in the Eastern United States. American Journal of Tropical Medicine and Hygiene, 2012, 86, 1062-1071.	0.6	141
76	Evaluation of the Infectiousness to Mice of Soil Contaminated with Yersinia pestis-Infected Blood. Vector-Borne and Zoonotic Diseases, 2012, 12, 948-952.	0.6	21
77	Climate Predictors of the Spatial Distribution of Human Plague Cases in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2012, 86, 514-523.	0.6	23
78	Transmission of Flea-Borne Zoonotic Agents. Annual Review of Entomology, 2012, 57, 61-82.	5.7	159
79	Flea Diversity as an Element for Persistence of Plague Bacteria in an East African Plague Focus. PLoS ONE, 2012, 7, e35598.	1.1	40
80	Improvement of Disease Prediction and Modeling through the Use of Meteorological Ensembles: Human Plague in Uganda. PLoS ONE, 2012, 7, e44431.	1.1	36
81	Changing Socioeconomic Indicators of Human Plague, New Mexico, USA. Emerging Infectious Diseases, 2012, 18, 1151-1154.	2.0	5
82	Using Geographic Information Systems and Decision Support Systems for the Prediction, Prevention, and Control of Vector-Borne Diseases. Annual Review of Entomology, 2011, 56, 41-61.	5.7	149
83	Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period. Parasites and Vectors, 2011, 4, 191.	1.0	26
84	Transmission Shifts Underlie Variability in Population Responses to Yersinia pestis Infection. PLoS ONE, 2011, 6, e22498.	1.1	31
85	Transmission Efficiency of Francisella tularensis by Adult American Dog Ticks (Acari: Ixodidae). Journal of Medical Entomology, 2011, 48, 884-890.	0.9	36
86	Effects of Temperature on Early-Phase Transmission of Yersina pestis by the Flea, Xenopsylla cheopis. Journal of Medical Entomology, 2011, 48, 411-417.	0.9	22
87	An Acarologic Survey and Amblyomma americanum Distribution Map with Implications for Tularemia Risk in Missouri. American Journal of Tropical Medicine and Hygiene, 2011, 84, 411-419.	0.6	34
88	Landscape and Residential Variables Associated with Plague-Endemic Villages in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2011, 84, 435-442.	0.6	37
89	Assessing Human Risk of Exposure to Plague Bacteria in Northwestern Uganda Based on Remotely Sensed Predictors. American Journal of Tropical Medicine and Hygiene, 2010, 82, 904-911.	0.6	34
90	Transmission Dynamics of Francisella tularensis Subspecies and Clades by Nymphal Dermacentor variabilis (Acari: Ixodidae). American Journal of Tropical Medicine and Hygiene, 2010, 83, 645-652.	0.6	35

#	Article	IF	CITATIONS
91	Spatial Risk Assessments Based on Vector-Borne Disease Epidemiologic Data: Importance of Scale for West Nile Virus Disease in Colorado. American Journal of Tropical Medicine and Hygiene, 2010, 82, 945-953.	0.6	26
92	Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology (United Kingdom), 2010, 156, 2216-2225.	0.7	47
93	Climatic Predictors of the Intra- and Inter-Annual Distributions of Plague Cases in New Mexico Based on 29 Years of Animal-Based Surveillance Data. American Journal of Tropical Medicine and Hygiene, 2010, 82, 95-102.	0.6	26
94	Evaluation of Rodent Bait Containing Imidacloprid for the Control of Fleas on Commensal Rodents in a Plague-Endemic Region of Northwest Uganda. Journal of Medical Entomology, 2010, 47, 842-850.	0.9	16
95	A spatially-explicit model of acarological risk of exposure to Borrelia burgdorferi-infected Ixodes pacificus nymphs in northwestern California based on woodland type, temperature, and water vapor. Ticks and Tick-borne Diseases, 2010, 1, 35-43.	1.1	45
96	Evaluation of Rodent Bait Containing Imidacloprid for the Control of Fleas on Commensal Rodents in a Plague-Endemic Region of Northwest Uganda. Journal of Medical Entomology, 2010, 47, 842-850.	0.9	12
97	Flea Diversity and Infestation Prevalence on Rodents in a Plague-Endemic Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2009, 81, 718-724.	0.6	50
98	Population Structure of the Lyme Borreliosis Spirochete <i>Borrelia burgdorferi</i> in the Western Black-Legged Tick (<i>Ixodes pacificus</i>) in Northern California. Applied and Environmental Microbiology, 2009, 75, 7243-7252.	1.4	37
99	Colorado animal-based plague surveillance systems: relationships between targeted animal species and prediction efficacy of areas at risk for humans. Journal of Vector Ecology, 2009, 34, 22-31.	0.5	17
100	Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California. Journal of Vector Ecology, 2009, 34, 81-91.	0.5	46
101	Studies of Vector Competency and Efficiency of North American Fleas for <l>Yersinia pestis</l> : State of the Field and Future Research Needs. Journal of Medical Entomology, 2009, 46, 737-744.	0.9	80
102	Transmission Cycles ofBorrelia burgdorferiandB. bissettiiin Relation to Habitat Type in Northwestern California. Journal of Vector Ecology, 2009, 34, 81-91.	0.5	34
103	Adaptive strategies of <i>Yersinia pestis</i> to persist during inter-epizootic and epizootic periods. Veterinary Research, 2009, 40, 01.	1.1	168
104	Spatial Risk Models for Human Plague in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2009, 80, 1014-1022.	0.6	29
105	Short report: time course of hematogenous dissemination of Francisella tularensis A1, A2, and Type B in laboratory mice. American Journal of Tropical Medicine and Hygiene, 2009, 80, 259-62.	0.6	7
106	Spatial risk models for human plague in the West Nile region of Uganda. American Journal of Tropical Medicine and Hygiene, 2009, 80, 1014-22.	0.6	17
107	Transmission Efficiency of Two Flea Species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) Involved in Plague Epizootics among Prairie Dogs. EcoHealth, 2008, 5, 205-212.	0.9	77
108	Spatial Modeling of Human Risk of Exposure to Vector-Borne Pathogens Based on Epidemiological Versus Arthropod Vector Data. Journal of Medical Entomology, 2008, 45, 181-192.	0.9	71

REBECCA J EISEN

#	Article	IF	CITATIONS
109	Climate and Vectorborne Diseases. American Journal of Preventive Medicine, 2008, 35, 436-450.	1.6	397
110	<i>Oropsylla hirsuta</i> (Siphonaptera: Ceratophyllidae) Can Support Plague Epizootics in Black-Tailed Prairie Dogs (<i>Cynomys ludovicianus</i>) by Early-Phase Transmission of <i>Yersinia pestis</i> . Vector-Borne and Zoonotic Diseases, 2008, 8, 359-368.	0.6	49
111	Transmission Dynamics of <i>Borrelia burgdorferi</i> s.s. During the Key Third Day of Feeding by Nymphal <i>Ixodes scapularis</i> (Acari: Ixodidae). Journal of Medical Entomology, 2008, 45, 732-736.	0.9	43
112	Demonstration of Early-Phase Transmission of <l>Yersinia pestis</l> by the Mouse Flea, <l>Aetheca wagneri</l> (Siphonaptera: Ceratophylidae), and Implications for the Role of Deer Mice as Enzootic Reservoirs. Journal of Medical Entomology, 2008, 45, 1160-1164.	0.9	31
113	Source of Host Blood Affects Prevalence of Infection and Bacterial Loads of <i>Yersinia pestis</i> in Fleas. Journal of Medical Entomology, 2008, 45, 933-938.	0.9	16
114	Exposure of Small Rodents to Plague during Epizootics in Black-tailed Prairie Dogs. Journal of Wildlife Diseases, 2008, 44, 724-730.	0.3	24
115	Source of Host Blood Affects Prevalence of Infection and Bacterial Loads of <i>Yersinia pestis</i> in Fleas. Journal of Medical Entomology, 2008, 45, 933-938.	0.9	21
116	Transmission Dynamics of <i>Borrelia burgdorferi</i> s.s. During the Key Third Day of Feeding by Nymphal <i>Ixodes scapularis</i> (Acari: Ixodidae). Journal of Medical Entomology, 2008, 45, 732-736.	0.9	45
117	Demonstration of Early-Phase Transmission of Yersinia pestis by the Mouse Flea, Aetheca wagneri (Siphonaptera: Ceratophylidae), and Implications for the Role of Deer Mice as Enzootic Reservoirs. Journal of Medical Entomology, 2008, 45, 1160-1164.	0.9	29
118	Persistence of <i>Yersinia pestis</i> in Soil Under Natural Conditions. Emerging Infectious Diseases, 2008, 14, 941-943.	2.0	95
119	Early-phase Transmission of Yersinia pestis by Cat Fleas (Ctenocephalides felis) and Their Potential Role as Vectors in a Plague-endemic Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2008, 78, 949-956.	0.6	83
120	Ecoepidemiology of tularemia in the southcentral United States. American Journal of Tropical Medicine and Hygiene, 2008, 78, 586-94.	0.6	9
121	Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. American Journal of Tropical Medicine and Hygiene, 2008, 78, 949-56.	0.6	41
122	Early-Phase Transmission of <i>Yersinia pestis</i> by Unblocked <i>Xenopsylla cheopis</i> (Siphonaptera:) Tj ETQq0 678-682.	0 0 rgBT 0.9	/Overlock 10 73
123	Temporal Dynamics of Early-Phase Transmission of <i>Yersinia pestis</i> by Unblocked Fleas: Secondary Infectious Feeds Prolong Efficient Transmission by <i>Oropsylla montana</i> (Siphonaptera: Ceratophyllidae). Journal of Medical Entomology, 2007, 44, 672-677.	0.9	29
124	Early-Phase Transmission of <i>Yersinia pestis</i> by Unblocked <i>Xenopsylla cheopis</i> (Siphonaptera: Pulicidae) Is as Efficient as Transmission by Blocked Fleas. Journal of Medical Entomology, 2007, 44, 678-682.	0.9	60
125	Human Plague in the Southwestern United States, 1957–2004: Spatial Models of Elevated Risk of Human Exposure to <i>Yersinia pestis</i> . Journal of Medical Entomology, 2007, 44, 530-537.	0.9	44
126	Human Plague in the Southwestern United States, 1957–2004: Spatial Models of Elevated Risk of Human Exposure toYersinia pestis. Journal of Medical Entomology, 2007, 44, 530-537.	0.9	44

REBECCA J EISEN

#	Article	IF	CITATIONS
127	Temporal Dynamics of Early-Phase Transmission of <i>Yersinia pestis</i> by Unblocked Fleas: Secondary Infectious Feeds Prolong Efficient Transmission by <i>Oropsylla montana</i> (Siphonaptera:) Tj ETQq1 1 0.784314	łn g.® T/O∨	er\$øck 10 Tf
128	Need for Improved Methods to Collect and Present Spatial Epidemiologic Data for Vectorborne Diseases. Emerging Infectious Diseases, 2007, 13, 1816-1820.	2.0	68
129	Residence-Linked Human Plague in New Mexico: A Habitat-Suitability Model. American Journal of Tropical Medicine and Hygiene, 2007, 77, 121-125.	0.6	39
130	A Spatial Model of Shared Risk for Plague and Hantavirus Pulmonary Syndrome in the Southwestern United States. American Journal of Tropical Medicine and Hygiene, 2007, 77, 999-1004.	0.6	42
131	Residence-linked human plague in New Mexico: a habitat-suitability model. American Journal of Tropical Medicine and Hygiene, 2007, 77, 121-5.	0.6	16
132	A spatial model of shared risk for plague and hantavirus pulmonary syndrome in the southwestern United States. American Journal of Tropical Medicine and Hygiene, 2007, 77, 999-1004.	0.6	20
133	Detection of a <i>Borrelia miyamotoi</i> Sensu Lato Relapsing-Fever Group Spirochete from <i>Ixodes pacificus</i> in California. Journal of Medical Entomology, 2006, 43, 120-123.	0.9	35
134	Detection of aBorrelia miyamotoiSensu Lato Relapsing-Fever Group Spirochete fromIxodes pacificusin California. Journal of Medical Entomology, 2006, 43, 120-123.	0.9	94
135	Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15380-15385.	3.3	203
136	PREDICTING DENSITY OF IXODES PACIFICUS NYMPHS IN DENSE WOODLANDS IN MENDOCINO COUNTY, CALIFORNIA, BASED ON GEOGRAPHIC INFORMATION SYSTEMS AND REMOTE SENSING VERSUS FIELD-DERIVED DATA. American Journal of Tropical Medicine and Hygiene, 2006, 74, 632-640.	0.6	56
137	SPATIAL PATTERNS OF LYME DISEASE RISK IN CALIFORNIA BASED ON DISEASE INCIDENCE DATA AND MODELING OF VECTOR-TICK EXPOSURE. American Journal of Tropical Medicine and Hygiene, 2006, 75, 669-676.	0.6	73
138	Predicting density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California, based on geographic information systems and remote sensing versus field-derived data. American Journal of Tropical Medicine and Hygiene, 2006, 74, 632-40.	0.6	27
139	Spatial patterns of Lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure. American Journal of Tropical Medicine and Hygiene, 2006, 75, 669-76.	0.6	35
140	Remote Sensing (Normalized Difference Vegetation Index) Classification of Risk Versus Minimal Risk Habitats for Human Exposure to <i>Ixodes pacificus</i> (Acari: Ixodidae) Nymphs in Mendocino County, California. Journal of Medical Entomology, 2005, 42, 75-81.	0.9	12
141	Western Gray Squirrel (Rodentia: Sciuridae): A Primary Reservoir Host of <i>Borrelia burgdorferi</i> in Californian Oak Woodlands?. Journal of Medical Entomology, 2005, 42, 388-396.	0.9	41
142	Western Gray Squirrel (Rodentia: Sciuridae): A Primary Reservoir Host of <i>Borrelia burgdorferi</i> in Californian Oak Woodlands?. Journal of Medical Entomology, 2005, 42, 388-396.	0.9	85
143	Life Stage-Related Differences in Density of Questing Ticks and Infection with <i>Borrelia burgdorferi</i> sensu lato Within a Single Cohort of <i>lxodes pacificus</i> (Acari: Ixodidae). Journal of Medical Entomology, 2004, 41, 768-773.	0.9	35
144	Habitat-related variation in infestation of lizards and rodents with Ixodes ticks in dense woodlands in Mendocino County, California. Experimental and Applied Acarology, 2004, 33, 215-233.	0.7	26

#	Article	IF	CITATIONS
145	The roles of birds, lizards, and rodents as hosts for the western black-legged tick Ixodes pacificus. Journal of Vector Ecology, 2004, 29, 295-308.	0.5	67
146	Environmentally Related Variability in Risk of Exposure to Lyme Disease Spirochetes in Northern California: Effect of Climatic Conditions and Habitat Type. Environmental Entomology, 2003, 32, 1010-1018.	0.7	79