List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4509820/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Statistical and analytical approach of multi-criteria group decision-making based on the correlation coefficient under intuitionistic 2-tuple fuzzy linguistic environment. Expert Systems With Applications, 2022, 193, 116341.	7.6	21
2	Swimmer Assessment Model (SWAM): Expert System Supporting Sport Potential Measurement. IEEE Access, 2022, 10, 5051-5068.	4.2	5
3	Towards Reliable Results - A Comparative Analysis of Selected MCDA Techniques in the Camera Selection Problem. Lecture Notes in Business Information Processing, 2022, , 143-165.	1.0	1
4	pyrepo-mcda — Reference objects based MCDA software package. SoftwareX, 2022, 19, 101107.	2.6	8
5	Sustainable cities and communities assessment using the DARIA-TOPSIS method. Sustainable Cities and Society, 2022, 83, 103926.	10.4	65
6	Decision Support in Selecting a Reliable Strategy for Sustainable Urban Transport Based on Laplacian Energy of T-Spherical Fuzzy Graphs. Energies, 2022, 15, 4970.	3.1	15
7	Multi-Criteria Seed Selection for Targeting Multi-Attribute Nodes in Complex Networks. Symmetry, 2021, 13, 731.	2.2	3
8	An ANN Model Trained on Regional Data in the Prediction of Particular Weather Conditions. Applied Sciences (Switzerland), 2021, 11, 4757.	2.5	4
9	A Novel Multi-Criteria Group Decision-Making Approach Based on Bonferroni and Heronian Mean Operators under Hesitant 2-Tuple Linguistic Environment. Mathematics, 2021, 9, 1489.	2.2	7
10	OONIS — Object-Oriented Network Infection Simulator. SoftwareX, 2021, 14, 100675.	2.6	6
11	Methodical Aspects of MCDM Based E-Commerce Recommender System. Journal of Theoretical and Applied Electronic Commerce Research, 2021, 16, 2192-2229.	5.7	52
12	Best-Worst method and Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. Expert Systems With Applications, 2021, 181, 115088.	7.6	77
13	Algorithms Effectiveness comparison in solving Nonogram boards. Procedia Computer Science, 2021, 192, 1885-1893.	2.0	2
14	Towards proper consumer choices - MCDM based product selection. Procedia Computer Science, 2021, 192, 1347-1358.	2.0	8
15	Multi-criteria Seed Selection for Targeted Influence Maximization Within Social Networks. Lecture Notes in Computer Science, 2021, , 454-461.	1.3	0
16	How to determine complex MCDM model in the COMET method? Automotive sport measurement case study. Procedia Computer Science, 2021, 192, 376-386.	2.0	4
17	On Graph Structures in Fuzzy Environment Using Optimization Parameter. IEEE Access, 2021, 9, 75699-75711.	4.2	3
18	A fuzzy assessment model for freestyle swimmers - a comparative analysis of the MCDA methods. Procedia Computer Science, 2021, 192, 4148-4157.	2.0	9

#	Article	IF	CITATIONS
19	Study on objectivity of mobile phone preferences: the MCDA analysis. Procedia Computer Science, 2021, 192, 5067-5080.	2.0	2
20	Can weighting methods provide similar results in MCDA problems? Selection of energetic materials study case. Procedia Computer Science, 2021, 192, 4592-4601.	2.0	5
21	STUDY TOWARDS THE TIME-BASED MCDA RANKING ANALYSIS – A SUPPLIER SELECTION CASE STUDY. Facta Universitatis, Series: Mechanical Engineering, 2021, 19, 381.	4.6	36
22	Towards Innovative MCDM-based Sustainable Consumer Choices System: Automotive Evaluation Case Study. , 2021, , .		1
23	New Pythagorean Entropy Measure with Application in Multi-Criteria Decision Analysis. Entropy, 2021, 23, 1600.	2.2	19
24	Towards the RES Development: Multi-Criteria Assessment of Energy Storage Devices. , 2021, , .		2
25	Multi-Criteria Assessment of Swimmers' Predispositions to Compete in Swimming Styles. , 2021, , .		1
26	Towards an e-commerce recommendation system based on MCDM methods. , 2021, , .		2
27	Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry, 2020, 12, 1549.	2.2	248
28	Why TOPSIS does not always give correct results?. Procedia Computer Science, 2020, 176, 3591-3600.	2.0	14
29	Ontology learning methods from text - an extensive knowledge-based approach. Procedia Computer Science, 2020, 176, 3356-3368.	2.0	10
30	Multi-criteria decision making approach to production line optimization. Procedia Computer Science, 2020, 176, 3820-3830.	2.0	4
31	Identification of Players Ranking in E-Sport. Applied Sciences (Switzerland), 2020, 10, 6768.	2.5	21
32	Intuitionistic Fuzzy Sets in Multi-Criteria Group Decision Making Problems Using the Characteristic Objects Method. Symmetry, 2020, 12, 1382.	2.2	42
33	How to Apply Fuzzy MISO PID in the Industry? An Empirical Study Case on Simulation of Crane Relocating Containers. Electronics (Switzerland), 2020, 9, 2017.	3.1	5
34	Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study. Energies, 2020, 13, 6548.	3.1	52
35	Sustainable Decision Making Using a Consensus Model for Consistent Hesitant Fuzzy Preference Relations—Water Allocation Management Case Study. Symmetry, 2020, 12, 1957.	2.2	1
36	A Fuzzy Inference System for Players Evaluation in Multi-Player Sports: The Football Study Case. Symmetry, 2020, 12, 2029.	2.2	37

#	Article	IF	CITATIONS
37	Identification of reference multi criteria domain model - Production line optimization case study. Procedia Computer Science, 2020, 176, 3794-3801.	2.0	2
38	Swimming progression evaluation by assessment model based on the COMET method. Procedia Computer Science, 2020, 176, 3514-3523.	2.0	12
39	Towards standardization in frameworks, tools and approaches dedicated to ontology building and management. Procedia Computer Science, 2020, 176, 3345-3355.	2.0	1
40	A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management. Energies, 2020, 13, 2155.	3.1	82
41	A New Method to Support Decision-Making in an Uncertain Environment Based on Normalized Interval-Valued Triangular Fuzzy Numbers and COMET Technique. Symmetry, 2020, 12, 516.	2.2	68
42	Application of Hill Climbing Algorithm in Determining the Characteristic Objects Preferences Based on the Reference Set of Alternatives. Smart Innovation, Systems and Technologies, 2020, , 341-351.	0.6	10
43	The Search of the Optimal Preference Values of the Characteristic Objects by Using Particle Swarm Optimization in the Uncertain Environment. Smart Innovation, Systems and Technologies, 2020, , 353-363.	0.6	11
44	Finding an Approximate Global Optimum of Characteristic Objects Preferences by Using Simulated Annealing. Smart Innovation, Systems and Technologies, 2020, , 365-375.	0.6	11
45	Multi-criteria Approach to Planning of Information Spreading Processes Focused on Their Initialization with the Use of Sequential Seeding. Lecture Notes in Business Information Processing, 2020, , 116-134.	1.0	1
46	Generalised framework for multi-criteria method selection. Omega, 2019, 86, 107-124.	5.9	320
47	Multicriteria Approach to Sustainable Transport Evaluation under Incomplete Knowledge: Electric Bikes Case Study. Sustainability, 2019, 11, 3314.	3.2	57
48	Comparative study of ICT and SIS measurement in Polish households using a MCDA-based approach. Procedia Computer Science, 2019, 159, 2616-2628.	2.0	8
49	Towards Knowledge Handling in Sustainable Management Domain. Procedia Computer Science, 2019, 159, 1591-1601.	2.0	4
50	Ontology Supporting Green Supplier Selection Process. Procedia Computer Science, 2019, 159, 1602-1613.	2.0	7
51	Parametrization of Spreading Processes Within Complex Networks with the Use of Knowledge Acquired from Network Samples. Procedia Computer Science, 2019, 159, 2279-2293.	2.0	2
52	Application of VMCM method (Vector Measure Construction Methods) to estimate consumer's quality of life in EU countries – dynamic perspective. Procedia Computer Science, 2019, 159, 2404-2413.	2.0	7
53	Multicriteria Selection of Online Advertising Content for the Habituation Effect Reduction. Lecture Notes in Computer Science, 2019, , 499-509.	1.3	0
54	Comparative Study of Different MCDA-Based Approaches in Sustainable Supplier Selection Problem. Lecture Notes in Business Information Processing, 2019, , 176-193.	1.0	2

#	Article	IF	CITATIONS
55	Generalised framework for multi-criteria method selection: Rule set database and exemplary decision support system implementation blueprints. Data in Brief, 2019, 22, 639-642.	1.0	53
56	A gradual approach for maximising user conversion without compromising experience with high visual intensity website elements. Internet Research, 2019, 29, 194-217.	4.9	45
57	Hierarchical Representation of Website Evaluation Model Using Survey andÂPerceptual Based Criteria. Lecture Notes in Business Information Processing, 2018, , 229-248.	1.0	1
58	Dynamic Decision Support in the Internet Marketing Management. Lecture Notes in Computer Science, 2018, , 39-68.	1.3	4
59	Decision Making with Uncertainty Using Hesitant Fuzzy Sets. International Journal of Fuzzy Systems, 2018, 20, 93-103.	4.0	156
60	Handling Data Uncertainty in Decision Making with COMET. , 2018, , .		32
61	Decision-Making using the Hesitant Fuzzy Sets COMET Method: An Empirical Study of the Electric City Buses Selection. , 2018, , .		27
62	An Attempt to Knowledge Conceptualization of Methods and Tools Supporting Ontology Evaluation Process. Procedia Computer Science, 2018, 126, 2238-2247.	2.0	3
63	Multi-criteria decision support for planning and evaluation of performance of viral marketing campaigns in social networks. PLoS ONE, 2018, 13, e0209372.	2.5	44
64	An Index to Measure the Sustainable Information Society: The Polish Households Case. Sustainability, 2018, 10, 3223.	3.2	42
65	Hesitant Probabilistic Multiplicative Preference Relations in Group Decision Making. Applied Sciences (Switzerland), 2018, 8, 398.	2.5	40
66	Towards Sustainability in Viral Marketing with User Engaging Supporting Campaigns. Sustainability, 2018, 10, 15.	3.2	15
67	Using PEQUAL Methodology in Auction Platforms Evaluation Process. Lecture Notes in Business Information Processing, 2017, , 222-241.	1.0	3
68	The Temporal Supplier Evaluation Model Based on Multicriteria Decision Analysis Methods. Lecture Notes in Computer Science, 2017, , 432-442.	1.3	4
69	The Classification of Internet Shop Customers based on the Cluster Analysis and Graph Cellular Automata. Procedia Computer Science, 2017, 112, 2280-2289.	2.0	10
70	Mobile System of Decision-Making on Road Threats. Procedia Computer Science, 2017, 112, 1737-1746.	2.0	9
71	Application of the Fair Secret Exchange Protocols in the Distribution of Electronic Invoices. Procedia Computer Science, 2017, 112, 1819-1828.	2.0	5
72	Identification of a Multi-criteria Assessment Model of Relation Between Editorial and Commercial Content in Web Systems. Advances in Intelligent Systems and Computing, 2017, , 295-305.	0.6	6

#	Article	IF	CITATIONS
73	Multi-Criteria Analysis of Electric Vans for City Logistics. Sustainability, 2017, 9, 1453.	3.2	90
74	Group Decision-Making for Hesitant Fuzzy Sets Based on Characteristic Objects Method. Symmetry, 2017, 9, 136.	2.2	88
75	Intuitionistic-Fuzzy Goals in Zero-Sum Multi Criteria Matrix Games. Symmetry, 2017, 9, 158.	2.2	22
76	Chaotic Dynamical State Variables Selection Procedure Based Image Encryption Scheme. Symmetry, 2017, 9, 312.	2.2	16
77	Cellular Automaton to Study the Impact of Changes in Traffic Rules in a Roundabout: A Preliminary Approach. Applied Sciences (Switzerland), 2017, 7, 742.	2.5	23
78	Using the PROSA Method in Offshore Wind Farm Location Problems. Energies, 2017, 10, 1755.	3.1	73
79	Integration of Eye-Tracking Based Studies into e-Commerce Websites Evaluation Process with eQual and TOPSIS Methods. Lecture Notes in Business Information Processing, 2017, , 56-80.	1.0	8
80	Online Comparison System with Certain and Uncertain Criteria Based on Multi-criteria Decision Analysis Method. Lecture Notes in Computer Science, 2017, , 579-589.	1.3	4
81	A Cellular Automaton Based System for Traffic Analyses on the Roundabout. Lecture Notes in Computer Science, 2017, , 56-65.	1.3	5
82	Green Energy for a Green City—A Multi-Perspective Model Approach. Sustainability, 2016, 8, 702.	3.2	51
83	Outline of Multicriteria Decision-making in Green Logistics. Transportation Research Procedia, 2016, 16, 537-552.	1.5	43
84	Research on the Properties of the AHP in the Environment of Inaccurate Expert Evaluations. Springer Proceedings in Business and Economics, 2016, , 227-243.	0.3	15
85	Eye Tracking Based Experimental Evaluation of the Parameters of Online Content Affecting the Web User Behaviour. Springer Proceedings in Business and Economics, 2016, , 311-332.	0.3	4
86	The Characteristic Objects Method: A New Intelligent Decision Support Tool for Sustainable Manufacturing. Smart Innovation, Systems and Technologies, 2016, , 349-359.	0.6	24
87	Green Supplier Selection Framework Based on Multi-Criteria Decision-Analysis Approach. Smart Innovation, Systems and Technologies, 2016, , 361-371.	0.6	24
88	Fuzzy multi-objective modeling of effectiveness and user experience in online advertising. Expert Systems With Applications, 2016, 65, 315-331.	7.6	52
89	Modeling the Perceptual Response from Effects Oriented Web Components Towards Lower Intrusiveness. Procedia Computer Science, 2016, 96, 147-158.	2.0	1
90	Dynamic MCDA Approach to Multilevel Decision Support in Online Environment. Lecture Notes in Computer Science, 2016, , 553-564.	1.3	1

#	Article	IF	CITATIONS
91	An Ontology Supporting Multiple-Criteria Decision Analysis Method Selection. Smart Innovation, Systems and Technologies, 2016, , 89-99.	0.6	0
92	The Rank Reversals Paradox in Management Decisions: The Comparison of the AHP and COMET Methods. Smart Innovation, Systems and Technologies, 2016, , 181-191.	0.6	35
93	Transformations of Standardized MLP Models and Linguistic Data in the Computerized Decision Support System. Intelligent Systems Reference Library, 2016, , 213-231.	1.2	1
94	Guideline for MCDA Method Selection in Production Management Area. Intelligent Systems Reference Library, 2016, , 119-138.	1.2	18
95	Selected Issues of Rank Reversal Problem in ANP Method. Springer Proceedings in Business and Economics, 2016, , 203-225.	0.3	10
96	Construction and Restructuring of the Knowledge Repository of Website Evaluation Methods. Lecture Notes in Business Information Processing, 2016, , 29-52.	1.0	9
97	Identification of a Multi-criteria Model ofÂLocation Assessment for Renewable Energy Sources. Lecture Notes in Computer Science, 2016, , 321-332.	1.3	26
98	Towards the Tradeoff Between Online Marketing Resources Exploitation and the User Experience with the Use of Eye Tracking. Lecture Notes in Computer Science, 2016, , 330-343.	1.3	22
99	An Ontology-Based Knowledge Representation of MCDA Methods. Lecture Notes in Computer Science, 2016, , 54-64.	1.3	10
100	Web Projects Evaluation Using the Method of Significant Website Assessment Criteria Detection. Lecture Notes in Computer Science, 2016, , 167-188.	1.3	6
101	Multistage performance modelling in digital marketing management. Economics and Sociology, 2016, 9, 101-125.	2.3	22
102	The Use of a Fuzzy Cognitive Maps and Eye Tracking in Exploitation of Online Advertising Resources. , 2016, , .		1
103	Exploitation of Web Resources Towards Increased Conversions and Effectiveness. Smart Innovation, Systems and Technologies, 2016, , 97-107.	0.6	0
104	Methodological Aspects of Decision Support System for the Location of Renewable Energy Sources. , 2015, , .		24
105	Knowledge Management in Website Quality Evaluation Domain. Lecture Notes in Computer Science, 2015, , 75-85.	1.3	12
106	Modeling the Impact of Visual Components on Verbal Communication in Online Advertising. Lecture Notes in Computer Science, 2015, , 44-53.	1.3	11
107	The Selection of Multicriteria Method Based on Unstructured Decision Problem Description. Lecture Notes in Computer Science, 2014, , 454-465.	1.3	17
108	Method of Criteria Selection and Weights Calculation in the Process of Web Projects Evaluation. Lecture Notes in Computer Science, 2014, , 684-693.	1.3	19

#	Article	IF	CITATIONS
109	Approach to Practical Ontology Design for Supporting COTS Component Selection Processes. Lecture Notes in Computer Science, 2013, , 245-255.	1.3	7
110	Integration of Domain Ontologies in the Repository of Website Evaluation Methods. , 0, , .		13
111	Knowledge Management in MCDA Domain. , 0, , .		23
112	Integrated Approach to e-Commerce Websites Evaluation with the Use of Surveys and Eye Tracking Based Experiments. , 0, , .		11
113	Sustainable Decision-Making using the COMET Method: An Empirical Study of the Ammonium Nitrate Transport Management. , 0, , .		33
114	Multi-criteria approach to viral marketing campaign planning in social networks, based on real networks, network samples and synthetic networks. , 0, , .		2
115	Towards Objectification of Multi-Criteria Assessments: a Comparative Study on MCDA Methods. , 0, , .		9
116	PEQUAL - E-commerce websites quality evaluation methodology. , 0, , .		7
117	MCDA-based Approach to Sustainable Supplier Selection. , 0, , .		6
118	MCDA-based Decision Support System for Sustainable Management – RES Case Study. , 0, , .		3