
Kasper RÃ,jkjær Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4509752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introducing Cysteines into Nanobodies for Site-Specific Labeling. Methods in Molecular Biology, 2022, 2446, 327-343.	0.9	0
2	Natural variation identifies a <i>Pxy</i> gene controlling vascular organisation and formation of nodules and lateral roots in <i>Lotus japonicus</i> . New Phytologist, 2021, 230, 2459-2473.	7.3	7
3	Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
4	Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nature Communications, 2020, 11, 3797.	12.8	31
5	Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369, 663-670.	12.6	87
6	A nanobody suite for yeast scaffold nucleoporins provides details of the nuclear pore complex structure. Nature Communications, 2020, 11, 6179.	12.8	12
7	Recruitment of properdin by bi-specific nanobodies activates the alternative pathway of complement. Molecular Immunology, 2020, 124, 200-210.	2.2	10
8	Solventâ€Free Photobiocatalytic Hydroxylation of Cyclohexane. ChemCatChem, 2020, 12, 4009-4013.	3.7	39
9	Introduction of an Aldehyde Handle on Nanobodies by Affinity-Guided Labeling. Bioconjugate Chemistry, 2020, 31, 1295-1300.	3.6	9
10	A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 2019, 10, 5047.	12.8	129
11	A <i>Lotus japonicus</i> cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14339-14348.	7.1	28
12	A potent complement factor C3–specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement. Journal of Biological Chemistry, 2018, 293, 6269-6281.	3.4	47
13	Isolation and Characterization of Nanobodies against a Zinc-Transporting P-Type ATPase. Antibodies, 2018, 7, 39.	2.5	4
14	Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. ELife, 2018, 7, .	6.0	51
15	A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. New Phytologist, 2018, 220, 526-538.	7.3	14
16	A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. ELife, 2018, 7, .	6.0	32
17	Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nature Communications, 2017, 8, 14534.	12.8	149
18	Insights into Rad3 kinase recruitment from the crystal structure of the DNA damage checkpoint protein Rad26. Journal of Biological Chemistry, 2017, 292, 8149-8157.	3.4	5

Kasper RÃjkjær Andersen

#	Article	IF	CITATIONS
19	Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	131
20	Introducing site-specific cysteines into nanobodies for mercury labelling allows <i>de novo</i> phasing of their crystal structures. Acta Crystallographica Section D: Structural Biology, 2017, 73, 804-813.	2.3	12
21	Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex. Cell, 2017, 171, 904-917.e19.	28.9	99
22	Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8118-E8127.	7.1	143
23	Optimized <i>E. coli</i> expression strain LOBSTR eliminates common contaminants from Hisâ€tag purification. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1857-1861.	2.6	182
24	Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors. ELife, 2013, 2, e00745.	6.0	70
25	Characterization of human phosphodiesterase 12 and identification of a novel 2′-5′ oligoadenylate nuclease – The ectonucleotide pyrophosphatase/phosphodiesterase 1. Biochimie, 2012, 94, 1098-1107.	2.6	17
26	The Crystal Structure of the Intact E.Âcoli RelBE Toxin-Antitoxin Complex Provides the Structural Basis for Conditional Cooperativity. Structure, 2012, 20, 1641-1648.	3.3	88
27	Exponential Megapriming PCR (EMP) Cloning—Seamless DNA Insertion into Any Target Plasmid without Sequence Constraints. PLoS ONE, 2012, 7, e53360.	2.5	67
28	Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO Journal, 2011, 30, 606-616.	7.8	87
29	Human 2′-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover. Nucleic Acids Research, 2011, 39, 3754-3770.	14.5	39
30	The Structural Basis for mRNA Recognition and Cleavage by the Ribosome-Dependent Endonuclease ReIE. Cell, 2009, 139, 1084-1095.	28.9	194
31	Take the "A―tail – quality control of ribosomal and transfer RNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 532-537.	1.9	15
32	Exonucleolysis is required for nuclear mRNA quality control in yeast THO mutants. Rna, 2008, 14, 2305-2313.	3.5	48
33	The 1.4-A crystal structure of the S. pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme. Nucleic Acids Research, 2007, 35, 3153-3164.	14.5	49