MiÅ,osz Ruszkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4509517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering the structure of Arabidopsis thaliana 5-enol-pyruvyl-shikimate-3-phosphate synthase: An essential step toward the discovery of novel inhibitors to supersede glyphosate. Computational and Structural Biotechnology Journal, 2022, 20, 1494-1505.	1.9	2
2	Cryo-EM reconstructions of BMV-derived virus-like particles reveal assembly defects in the icosahedral lattice structure. Nanoscale, 2022, 14, 3224-3233.	2.8	5
3	Serendipitous crystallization of E. coli HPII catalase, a sequel to "the tale usually not told― Acta Biochimica Polonica, 2021, 68, 29-31.	0.3	1
4	Structural and mechanistic insights into the bifunctional HISN2 enzyme catalyzing the second and third steps of histidine biosynthesis in plants. Scientific Reports, 2021, 11, 9647.	1.6	5
5	Peculiar substrate specificity of δ1-pyrroline-5-carboxylate reductase in the obligately fermentative bacterium Zymomonas mobilis. Molecular Biology Reports, 2021, 48, 6205-6211.	1.0	1
6	3D Domain Swapping Dimerization of the Receiver Domain of Cytokinin Receptor CRE1 From Arabidopsis thaliana and Medicago truncatula. Frontiers in Plant Science, 2021, 12, 756341.	1.7	3
7	Structural Insights Into the 5′UG/3′GU Wobble Tandem in Complex With Ba2+ Cation. Frontiers in Molecular Biosciences, 2021, 8, 762786.	1.6	3
8	Base pairing, structural and functional insights into N4-methylcytidine (m4C) and N4,N4-dimethylcytidine (m42C) modified RNA. Nucleic Acids Research, 2020, 48, 10087-10100.	6.5	12
9	Structural and kinetic properties of serine hydroxymethyltransferase from the halophytic cyanobacterium Aphanothece halophytica provide a rationale for salt tolerance. International Journal of Biological Macromolecules, 2020, 159, 517-529.	3.6	7
10	Structural Studies of Glutamate Dehydrogenase (Isoform 1) From Arabidopsis thaliana, an Important Enzyme at the Branch-Point Between Carbon and Nitrogen Metabolism. Frontiers in Plant Science, 2020, 11, 754.	1.7	30
11	Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples. Nucleic Acids Research, 2020, 48, 3304-3314.	6.5	16
12	S-adenosylmethionine synthases in plants: Structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. International Journal of Biological Macromolecules, 2020, 151, 554-565.	3.6	21
13	Comment on Wang's paper on the covalent Cysâ€Xâ€Lys bridges. Protein Science, 2019, 28, 470-471.	3.1	4
14	Structural basis of methotrexate and pemetrexed action on serine hydroxymethyltransferases revealed using plant models. Scientific Reports, 2019, 9, 19614.	1.6	9
15	Crystal structures of plant inorganic pyrophosphatase, an enzyme with a moonlighting autoproteolytic activity. Biochemical Journal, 2019, 476, 2297-2319.	1.7	10
16	Structural insights into the RNA methyltransferase domain of METTL16. Scientific Reports, 2018, 8, 5311.	1.6	80
17	Structural Insights into Substrate Selectivity and Activity of Bacterial Polyphosphate Kinases. ACS Catalysis, 2018, 8, 10746-10760.	5.5	48
18	Structural Analysis of Phosphoserine Aminotransferase (Isoform 1) From Arabidopsis thaliana– the Enzyme Involved in the Phosphorylated Pathway of Serine Biosynthesis. Frontiers in Plant Science, 2018, 9, 876.	1.7	21

MIÅ, osz Ruszkowski

#	Article	IF	CITATIONS
19	Guarding the gateway to histidine biosynthesis in plants: <i>Medicago truncatula</i> ATP-phosphoribosyltransferase in relaxed and tense states. Biochemical Journal, 2018, 475, 2681-2697.	1.7	6
20	Chloroplastic Serine Hydroxymethyltransferase From Medicago truncatula: A Structural Characterization. Frontiers in Plant Science, 2018, 9, 584.	1.7	18
21	Structures of Medicago truncatula L-Histidinol Dehydrogenase Show Rearrangements Required for NAD+ Binding and the Cofactor Positioned to Accept a Hydride. Scientific Reports, 2017, 7, 10476.	1.6	11
22	Structural Investigations of N-carbamoylputrescine Amidohydrolase from Medicago truncatula: Insights into the Ultimate Step of Putrescine Biosynthesis in Plants. Frontiers in Plant Science, 2016, 7, 350.	1.7	23
23	On methyleneâ€bridged cysteine and lysine residues in proteins. Protein Science, 2016, 25, 1734-1736.	3.1	16
24	Structural Studies of Medicago truncatula Histidinol Phosphate Phosphatase from Inositol Monophosphatase Superfamily Reveal Details of Penultimate Step of Histidine Biosynthesis in Plants. Journal of Biological Chemistry, 2016, 291, 9960-9973.	1.6	19
25	Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase. Frontiers in Plant Science, 2015, 6, 565.	1.7	31
26	Evolution of plant δ1-pyrroline-5-carboxylate reductases from phylogenetic and structural perspectives. Frontiers in Plant Science, 2015, 6, 567.	1.7	21
27	The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants. Frontiers in Plant Science, 2015, 6, 869.	1.7	40
28	Specific binding of gibberellic acid by Cytokinin-Specific Binding Proteins: a new aspect of plant hormone-binding proteins with the PR-10 fold. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2032-2041.	2.5	27
29	<i><scp>M</scp>edicagoÂtruncatula</i> histidineâ€containing phosphotransfer protein. FEBS Journal, 2013, 280, 3709-3720.	2.2	15
30	The landscape of cytokinin binding by a plant nodulin. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2365-2380.	2.5	16
31	Crystal structure of a PR-10 nodulin in complex with trans -zeatin. Biotechnologia, 2013, 1, 42-46.	0.3	2
32	New insights into the signaling and function of cytokinins in higher plants. Biotechnologia, 2012, 4, 400-413.	0.3	1
33	Diastereoselective cycloaddition of bromonitrile oxide to sugar derived chiral alkenes. A possible route for the synthesis of higher deoxysugars. Arkivoc, 2009, 2009, 181-192.	0.3	3