Elvis Genbo Xu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4508999/elvis-genbo-xu-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
73	Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. <i>Environmental Science</i> & amp; Technology, 2019 , 53, 12300-12310	10.3	276
72	Separation and Analysis of Microplastics and Nanoplastics in Complex Environmental Samples. <i>Accounts of Chemical Research</i> , 2019 , 52, 858-866	24.3	222
71	A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	215
7º	Time- and Oil-Dependent Transcriptomic and Physiological Responses to Deepwater Horizon Oil in Mahi-Mahi (Coryphaena hippurus) Embryos and Larvae. <i>Environmental Science & Environmental Science & En</i>	10.3	93
69	Biochar as a novel niche for culturing microbial communities in composting. <i>Waste Management</i> , 2016 , 54, 93-100	8.6	83
68	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009-30 November 2009. <i>Molecular Ecology Resources</i> , 2010 , 10, 404-8	8.4	78
67	Effects of HCO on Degradation of Toxic Contaminants of Emerging Concern by UV/NO. <i>Environmental Science & Environmental Scien</i>	10.3	76
66	Larval Red Drum (Sciaenops ocellatus) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences. <i>Environmental Science & Environmental Science & Env</i>	10.3	73
65	Induction of mitogynogenetic diploids and identification of WW super-female using sex-specific SSR markers in half-smooth tongue sole (Cynoglossus semilaevis). <i>Marine Biotechnology</i> , 2012 , 14, 120-	8 ^{3.4}	68
64	Construction of a genetic linkage map and mapping of a female-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). <i>Marine Biotechnology</i> , 2009 , 11, 699-709	3.4	57
63	Analysis of environmental nanoplastics: Progress and challenges. <i>Chemical Engineering Journal</i> , 2021 , 410, 128208	14.7	57
62	Toxicity Assessments of Micro- and Nanoplastics Can Be Confounded by Preservatives in Commercial Formulations. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 21-25	11	56
61	The occurrence and ecological risks of endocrine disrupting chemicals in sewage effluents from three different sewage treatment plants, and in natural seawater from a marine reserve of Hong Kong. <i>Marine Pollution Bulletin</i> , 2014 , 85, 352-62	6.7	52
60	Primary and Secondary Plastic Particles Exhibit Limited Acute Toxicity but Chronic Effects on. <i>Environmental Science & Environmental </i>	10.3	44
59	Short-term exposure to positively charged polystyrene nanoparticles causes oxidative stress and membrane destruction in cyanobacteria. <i>Environmental Science: Nano</i> , 2019 , 6, 3072-3079	7.1	43
58	Ecological risks posed by ammonia nitrogen (AN) and un-ionized ammonia (NH) in seven major river systems of China. <i>Chemosphere</i> , 2018 , 202, 136-144	8.4	34
57	Microbial community structure and predicted bacterial metabolic functions in biochar pellets aged in soil after 34 months. <i>Applied Soil Ecology</i> , 2016 , 100, 135-143	5	32

(2009-2015)

56	Environmental fate and ecological risks of nonylphenols and bisphenol A in the Cape D'Aguilar Marine Reserve, Hong Kong. <i>Marine Pollution Bulletin</i> , 2015 , 91, 128-38	6.7	31	
55	Preventing masks from becoming the next plastic problem. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 125	5.8	30	
54	Developmental toxicity of hydroxylated chrysene metabolites in zebrafish embryos. <i>Aquatic Toxicology</i> , 2017 , 189, 77-86	5.1	29	
53	Long-Term Spatio-Temporal Trends of Organotin Contaminations in the Marine Environment of Hong Kong. <i>PLoS ONE</i> , 2016 , 11, e0155632	3.7	28	
52	Occurrence and distribution of microplastics in China's largest freshwater lake system. <i>Chemosphere</i> , 2020 , 261, 128186	8.4	27	
51	An integrated environmental risk assessment and management framework for enhancing the sustainability of marine protected areas: the Cape d'Aguilar Marine Reserve case study in Hong Kong. <i>Science of the Total Environment</i> , 2015 , 505, 269-81	10.2	26	
50	Molecular method for sex identification of half-smooth tongue sole (Cynoglossus semilaevis) using a novel sex-linked microsatellite marker. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 12952-8	6.3	26	
49	Spatial and temporal assessment of environmental contaminants in water, sediments and fish of the Salton Sea and its two primary tributaries, California, USA, from 2002 to 2012. <i>Science of the Total Environment</i> , 2016 , 559, 130-140	10.2	26	
48	Revealing ecological risks of priority endocrine disrupting chemicals in four marine protected areas in Hong Kong through an integrative approach. <i>Environmental Pollution</i> , 2016 , 215, 103-112	9.3	26	
47	Novel transcriptome assembly and comparative toxicity pathway analysis in mahi-mahi (Coryphaena hippurus) embryos and larvae exposed to Deepwater Horizon oil. <i>Scientific Reports</i> , 2017 , 7, 44546	4.9	25	
46	Toxicity mechanisms of polystyrene microplastics in marine mussels revealed by high-coverage quantitative metabolomics using chemical isotope labeling liquid chromatography mass spectrometry. <i>Journal of Hazardous Materials</i> , 2021 , 417, 126003	12.8	24	
45	Exposure to Crude Oil Induces Retinal Apoptosis and Impairs Visual Function in Fish. <i>Environmental Science & Environmental Sc</i>	10.3	21	
44	Changes in microRNA-mRNA Signatures Agree with Morphological, Physiological, and Behavioral Changes in Larval Mahi-Mahi Treated with Deepwater Horizon Oil. <i>Environmental Science & Echnology</i> , 2018 , 52, 13501-13510	10.3	21	
43	Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. <i>Science of the Total Environment</i> , 2021 , 795, 148902	10.2	19	
42	Cyto- and geno-toxicity of 1,4-dioxane and its transformation products during ultraviolet-driven advanced oxidation processes. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 1213-12	1 8 2	18	
41	mRNA-miRNA-Seq Reveals Neuro-Cardio Mechanisms of Crude Oil Toxicity in Red Drum (Sciaenops ocellatus). <i>Environmental Science & Environmental Science</i>	10.3	17	
40	Impacts of Salinity and Temperature on the Thyroidogenic Effects of the Biocide Diuron in Menidia beryllina. <i>Environmental Science & Environmental Sc</i>	10.3	16	
39	Eighteen novel microsatellite markers for the Chinese sea perch, Lateolabrax maculatus. <i>Conservation Genetics</i> , 2009 , 10, 623-625	2.6	15	

38	Synergistic toxicity of microcystin-LR and Cu to zebrafish (Danio rerio). <i>Science of the Total Environment</i> , 2020 , 713, 136393	10.2	15
37	Efficient degradation of cytotoxic contaminants of emerging concern by UV/H2O2. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 1272-1281	4.2	14
36	Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2021 , 247, 109056	3.2	14
35	Differential Expression of MicroRNAs in Embryos and Larvae of Mahi-Mahi (Coryphaena hippurus) Exposed to Deepwater Horizon Oil. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 523-529	11	12
34	Spatial and temporal ecological risk assessment of unionized ammonia nitrogen in Tai Lake, China (2004-2015). <i>Ecotoxicology and Environmental Safety</i> , 2017 , 140, 249-255	7	11
33	Acute Toxicity of an Emerging Insecticide Pymetrozine to Procambarus clarkii Associated with Rice-Crayfish Culture (RCIS). <i>International Journal of Environmental Research and Public Health</i> , 2018 , 15,	4.6	11
32	A new method for SNP discovery. <i>BioTechniques</i> , 2009 , 46, 201-8	2.5	11
31	Tracking major endocrine disruptors in coastal waters using an integrative approach coupling field-based study and hydrodynamic modeling. <i>Environmental Pollution</i> , 2018 , 233, 387-394	9.3	11
30	Assessing Toxicity and Bioactivity of Smoked Cigarette Leachate Using Cell-Based Assays and Chemical Analysis. <i>Chemical Research in Toxicology</i> , 2019 , 32, 1670-1679	4	10
29	Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes. <i>Developmental Dynamics</i> , 2019 , 248, 337-350	2.9	9
28	Developmental transcriptomic analyses for mechanistic insights into critical pathways involved in embryogenesis of pelagic mahi-mahi (Coryphaena hippurus). <i>PLoS ONE</i> , 2017 , 12, e0180454	3.7	9
27	Polystyrene micro- and nanoplastics affect locomotion and daily activity of Drosophila melanogaster. <i>Environmental Science: Nano</i> , 2021 , 8, 110-121	7.1	9
26	The effect of chlorpyrifos on salinity acclimation of juvenile rainbow trout (Oncorhynchus mykiss). <i>Aquatic Toxicology</i> , 2018 , 195, 97-102	5.1	8
25	Is microplastic an oxidative stressor? Evidence from a meta-analysis on bivalves. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127211	12.8	7
24	Mixture Toxicity of Bensulfuron-Methyl and Acetochlor to Red Swamp Crayfish (Procambarus clarkii): Behavioral, Morphological and Histological Effects. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	6
23	Twelve polymorphic microsatellite loci from a dinucleotide-enriched genomic library of Japanese Spanish mackerel (Scomberomorus niphonius). <i>Conservation Genetics</i> , 2009 , 10, 1167-1169	2.6	6
22	Environmental fate of microplastics in the world's third-largest river: Basin-wide investigation and microplastic community analysis <i>Water Research</i> , 2021 , 210, 118002	12.5	6
21	Artificial turf infill associated with systematic toxicity in an amniote vertebrate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 25156-25161	11.5	6

(2021-2022)

20	Missing relationship between meso- and microplastics in adjacent soils and sediments. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127234	12.8	6
19	Changes in thyroid status of Menidia beryllina exposed to the antifouling booster irgarol: Impacts of temperature and salinity. <i>Chemosphere</i> , 2018 , 209, 857-865	8.4	5
18	Isolation and characterization of 10 polymorphic microsatellite loci from small yellow croaker (Pseudosciaena polyactis). <i>Conservation Genetics</i> , 2009 , 10, 1469-1471	2.6	5
17	Development of 15 novel dinucleotide microsatellite markers in the Senegalese sole Solea senegalensis. <i>Fisheries Science</i> , 2008 , 74, 1357-1359	1.9	5
16	Isolation and charaterization of polymorphic microsatellite loci from so-iuy mullet (Mugil soiuy Basilewsky 1855). <i>Conservation Genetics</i> , 2009 , 10, 653-655	2.6	4
15	Trophic transfer and effects of DDT in male hornyhead turbot (Pleuronichthys verticalis) from Palos Verdes Superfund site, CA (USA) and comparisons to field monitoring. <i>Environmental Pollution</i> , 2016 , 213, 940-948	9.3	4
14	Uptake, translocation, and biological impacts of micro(nano)plastics in terrestrial plants: Progress and prospects. <i>Environmental Research</i> , 2022 , 203, 111867	7.9	4
13	Isolation and charaterization of 12 dinucleotide microsatellite loci from Belenger jewfish (Johnius belengerii Cuvier 1830). <i>Conservation Genetics</i> , 2009 , 10, 1009-1011	2.6	3
12	Isolation and characterization of polymorphic microsatellite loci from bluefin leatherjacket (Navodon septentrionalis Gunther, 1877). <i>Conservation Genetics</i> , 2009 , 10, 1181-1184	2.6	3
11	New polymorphic microsatellite markers for bluefin leatherjacket (Navodon septentrionalis Gunther, 1877). <i>Conservation Genetics</i> , 2010 , 11, 1111-1113	2.6	3
10	Response to Comment on "Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea". <i>Environmental Science & Environmental Science</i>	10.3	3
9	Molecular mechanisms of zooplanktonic toxicity in the okadaic acid-producing dinoflagellate Prorocentrum lima. <i>Environmental Pollution</i> , 2021 , 279, 116942	9.3	3
8	Ten polymorphic microsatellite loci for the Atlantic halibut (Hippoglossus hippoglossus) and cross-species application in related species. <i>Conservation Genetics</i> , 2009 , 10, 611-614	2.6	2
7	Isolation and characterization of 30 novel polymorphic microsatellite loci from Japanese halfbeak, Hyporhamphus sajori (Temminck et Schlegel, 1846). <i>Conservation Genetics</i> , 2009 , 10, 1927-1930	2.6	2
6	Interrogation of the Gulf toadfish intestinal proteome response to hypersalinity exposure provides insights into osmoregulatory mechanisms and regulation of carbonate mineral precipitation. <i>Comparative Biochemistry and Physiology Part D: Genomics and Proteomics</i> , 2018 , 27, 66-76	2	2
5	Photocatalytic strategy to mitigate microplastic pollution in aquatic environments: Promising catalysts, efficiencies, mechanisms, and ecological risks. <i>Critical Reviews in Environmental Science and Technology</i> ,1-23	11.1	2
4	New polymorphic microsatellite markers for the summer flounder, Paralichthys dentatus. <i>Conservation Genetics</i> , 2009 , 10, 717-719	2.6	0
3	The developing zebrafish kidney is impaired by Deepwater Horizon crude oil early-life stage exposure: A molecular to whole-organism perspective. <i>Science of the Total Environment</i> , 2021 , 808, 151	9 ¹ 88 ^{.2}	O

Effects of Microplastics on Immune Responses of the Yellow Catfish Under Hypoxia. *Frontiers in Physiology*, **2021**, 12, 753999

4.6 0

Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish.. *Frontiers in Pharmacology*, **2022**, 13, 822111

5.6