Nadine Krüger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4508847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Veterinary Pathology, 2022, , 030098582110736.	0.8	11
2	The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell, 2022, 185, 447-456.e11.	13.5	736
3	Investigations on SARS-CoV-2 Susceptibility of Domestic and Wild Animals Using Primary Cell Culture Models Derived from the Upper and Lower Respiratory Tract. Viruses, 2022, 14, 828.	1.5	10
4	Evidence for an ACE2-Independent Entry Pathway That Can Protect from Neutralization by an Antibody Used for COVID-19 Therapy. MBio, 2022, 13, e0036422.	1.8	17
5	SARS-CoV-2 Omicron sublineages show comparable cell entry but differential neutralization by therapeutic antibodies. Cell Host and Microbe, 2022, 30, 1103-1111.e6.	5.1	38
6	Small-Molecule Thioesters as SARS-CoV-2 Main Protease Inhibitors: Enzyme Inhibition, Structure–Activity Relationships, Antiviral Activity, and X-ray Structure Determination. Journal of Medicinal Chemistry, 2022, 65, 9376-9395.	2.9	35
7	Nafamostat-Mediated Inhibition of SARS-CoV-2 Ribosomal Frameshifting Is Insufficient to Impair Viral Replication in Vero Cells. Comment on Munshi et al. Identifying Inhibitors of â°1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses. Viruses 2022, 14, 177. Viruses, 2022, 14, 1526.	1.5	3
8	Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: pre-clinical assessment of pharmacological and molecular properties. Chemical Science, 2021, 12, 12600-12609.	3.7	11
9	Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, 2021, 65, 103255.	2.7	256
10	SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 2021, 184, 2384-2393.e12.	13.5	848
11	SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Reports, 2021, 35, 109017.	2.9	77
12	Therapeutic Application of Alpha-1 Antitrypsin in COVID-19. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 224-227.	2.5	25
13	SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 36, 109415.	2.9	206
14	B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 37, 109825.	2.9	73
15	The Upper Respiratory Tract of Felids Is Highly Susceptible to SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2021, 22, 10636.	1.8	16
16	Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 2020, 585, 588-590.	13.7	370
17	The Amino Acid at Position 8 of the Proteolytic Cleavage Site of the Mumps Virus Fusion Protein Affects Viral Proteolysis and Fusogenicity. Journal of Virology, 2020, 94, .	1.5	0
18	SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181, 271-280.e8.	13.5	16,161

Nadine Krüger

#	Article	IF	CITATIONS
19	Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerging Microbes and Infections, 2020, 9, 155-168.	3.0	77
20	Fusogenicity of the Ghana Virus (Henipavirus: Ghanaian bat henipavirus) Fusion Protein is Controlled by the Cytoplasmic Domain of the Attachment Glycoprotein. Viruses, 2019, 11, 800.	1.5	5
21	Inhibitors of signal peptide peptidase and subtilisin/kexin-isozyme 1 inhibit Ebola virus glycoprotein-driven cell entry by interfering with activity and cellular localization of endosomal cathepsins. PLoS ONE, 2019, 14, e0214968.	1.1	5
22	Tetherin Inhibits Nipah Virus but Not Ebola Virus Replication in Fruit Bat Cells. Journal of Virology, 2019, 93, .	1.5	18
23	Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus. Cell Reports, 2018, 25, 312-320.e7.	2.9	13
24	The Sialic Acid Binding Activity of Human Parainfluenza Virus 3 and Mumps Virus Glycoproteins Enhances the Adherence of Group B Streptococci to HEp-2 Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 280.	1.8	16
25	The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells. PLoS ONE, 2016, 11, e0152134.	1.1	23
26	Recombinant mumps viruses expressing the batMuV fusion glycoprotein are highly fusion active and neurovirulent. Journal of General Virology, 2016, 97, 2837-2848.	1.3	5
27	Functional Properties and Genetic Relatedness of the Fusion and Hemagglutinin-Neuraminidase Proteins of a Mumps Virus-Like Bat Virus. Journal of Virology, 2015, 89, 4539-4548.	1.5	17
28	Characterization of African bat henipavirus GH-M74a glycoproteins. Journal of General Virology, 2014, 95, 539-548.	1.3	21
29	Attachment Protein G of an African Bat Henipavirus Is Differentially Restricted in Chiropteran and Nonchiropteran Cells. Journal of Virology, 2014, 88, 11973-11980.	1.5	10
30	Surface Glycoproteins of an African Henipavirus Induce Syncytium Formation in a Cell Line Derived from an African Fruit Bat, Hypsignathus monstrosus. Journal of Virology, 2013, 87, 13889-13891.	1.5	20