
Maria Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4508761/publications.pdf Version: 2024-02-01

MADIA FEDNANDEZ

#	Article	IF	CITATIONS
1	Toxicological Effects of Dietary Biogenic Amines. Current Nutrition and Food Science, 2010, 6, 145-156.	0.3	406
2	Biogenic amines in fermented foods. European Journal of Clinical Nutrition, 2010, 64, S95-S100.	1.3	348
3	Amino Acid Catabolic Pathways of Lactic Acid Bacteria. Critical Reviews in Microbiology, 2006, 32, 155-183.	2.7	346
4	Biogenic Amines in Dairy Products. Critical Reviews in Food Science and Nutrition, 2011, 51, 691-703.	5.4	303
5	Factors Influencing Biogenic Amines Accumulation in Dairy Products. Frontiers in Microbiology, 2012, 3, 180.	1.5	193
6	Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci?. Food Microbiology, 2012, 30, 132-138.	2.1	167
7	Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chemistry, 2016, 197, 658-663.	4.2	154
8	Biogenic Amines Degradation by Lactobacillus plantarum: Toward a Potential Application in Wine. Frontiers in Microbiology, 2012, 3, 122.	1.5	135
9	Metabolic Engineering of Acetaldehyde Production by <i>Streptococcus thermophilus</i> . Applied and Environmental Microbiology, 2002, 68, 5656-5662.	1.4	134
10	A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chemistry, 2013, 139, 1029-1035.	4.2	126
11	The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Scientific Reports, 2019, 9, 120.	1.6	126
12	HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms. Journal of Dairy Research, 2007, 74, 276-282.	0.7	116
13	The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry, 2017, 218, 249-255.	4.2	115
14	Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview. BioMed Research International, 2015, 2015, 1-13.	0.9	107
15	Factors affecting tyramine production in Enterococcus durans IPLA 655. Applied Microbiology and Biotechnology, 2007, 73, 1400-1406.	1.7	85
16	Sequencing and Transcriptional Analysis of the <i>Streptococcus thermophilus</i> Histamine Biosynthesis Gene Cluster: Factors That Affect Differential <i>hdcA</i> Expression. Applied and Environmental Microbiology, 2010, 76, 6231-6238.	1.4	82
17	Regulation of the metC-cysK Operon, Involved in Sulfur Metabolism in Lactococcus lactis. Journal of Bacteriology, 2002, 184, 82-90.	1.0	79
18	Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model. International Journal of Food Microbiology, 2012, 157, 297-304.	2.1	76

#	Article	IF	CITATIONS
19	Sequencing of the Tyrosine Decarboxylase Cluster of Lactococcus lactis IPLA 655 and the Development of a PCR Method for Detecting Tyrosine Decarboxylating Lactic Acid Bacteria. Journal of Food Protection, 2004, 67, 2521-2529.	0.8	75
20	Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Putrescine-Producing Lactococcus lactis. Applied and Environmental Microbiology, 2011, 77, 6409-6418.	1.4	74
21	Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Microbiology, 2007, 24, 75-81.	2.1	72
22	Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Applied Microbiology and Biotechnology, 2015, 99, 3547-3558.	1.7	67
23	Sequencing, characterization and transcriptional analysis of the histidine decarboxylase operon of Lactobacillus buchneri. Microbiology (United Kingdom), 2005, 151, 1219-1228.	0.7	66
24	Real time quantitative PCR detection of histamine-producing lactic acid bacteria in cheese: Relation with histamine content. Food Research International, 2008, 41, 1015-1019.	2.9	65
25	Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. International Journal of Food Microbiology, 2014, 175, 14-19.	2.1	63
26	qPCR for quantitative detection of tyramine-producing bacteria in dairy products. Food Research International, 2010, 43, 289-295.	2.9	62
27	A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chemistry, 2017, 217, 117-124.	4.2	61
28	Quantitative detection and identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex qPCR. Food Microbiology, 2010, 27, 933-939.	2.1	59
29	Multiplex qPCR for the detection and quantification of putrescine-producing lactic acid bacteria in dairy products. Food Control, 2012, 27, 307-313.	2.8	58
30	Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiology, 2013, 13, 288.	1.3	58
31	Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiology, 2011, 28, 434-439.	2.1	55
32	A PCR-DGGE method for the identification of histamine-producing bacteria in cheese. Food Control, 2016, 63, 216-223.	2.8	55
33	Bifidogenic effect and stimulation of short chain fatty acid production in human faecal slurry cultures by oligosaccharides derived from lactose and lactulose. Journal of Dairy Research, 2009, 76, 317-325.	0.7	53
34	Effect of post-ripening processing on the histamine and histamine-producing bacteria contents of different cheeses. International Dairy Journal, 2009, 19, 759-762.	1.5	50
35	Biogenic amines content in Spanish and French natural ciders: Application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiology, 2011, 28, 554-561.	2.1	50
36	Role of Tyramine Synthesis by Food-Borne <i>Enterococcus durans</i> in Adaptation to the Gastrointestinal Tract Environment. Applied and Environmental Microbiology, 2011, 77, 699-702.	1.4	50

#	Article	IF	CITATIONS
37	Tyramine biosynthesis in <i>Enterococcus durans</i> is transcriptionally regulated by the extracellular pH and tyrosine concentration. Microbial Biotechnology, 2009, 2, 625-633.	2.0	48
38	qPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends in Food Science and Technology, 2011, 22, 367-376.	7.8	46
39	Survival of biogenic amineâ€producing dairy LAB strains at pasteurisation conditions. International Journal of Food Science and Technology, 2011, 46, 516-521.	1.3	46
40	Genetic and functional analysis of biogenic amine production capacity among starter and non-starter lactic acid bacteria isolated from artisanal cheeses. European Food Research and Technology, 2015, 241, 377-383.	1.6	46
41	ACR1, a gene encoding a protein related to mitochondrial carriers, is essential for acetyl-CoA synthetase activity in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1994, 242, 727-735.	2.4	42
42	The biogenic amine tryptamine, unlike \hat{l}^2 -phenylethylamine, shows in vitro cytotoxicity at concentrations that have been found in foods. Food Chemistry, 2020, 331, 127303.	4.2	42
43	Magnetic immunochromatographic test for histamine detection in wine. Analytical and Bioanalytical Chemistry, 2019, 411, 6615-6624.	1.9	41
44	Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium. Applied Microbiology and Biotechnology, 2015, 99, 897-905.	1.7	40
45	Spermine and spermidine are cytotoxic towards intestinal cell cultures, but are they a health hazard at concentrations found in foods?. Food Chemistry, 2018, 269, 321-326.	4.2	40
46	Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products. Frontiers in Microbiology, 2016, 7, 591.	1.5	39
47	Isolation and typification of histamine-producing Lactobacillus vaginalis strains from cheese. International Journal of Food Microbiology, 2015, 215, 117-123.	2.1	38
48	Transcriptional regulation of the isocitrate lyase encoding gene inSaccharomyces cerevisiae. FEBS Letters, 1993, 333, 238-242.	1.3	37
49	Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiology, 2016, 59, 85-91.	2.1	35
50	Molecular characterization of the CmbR activator-binding site in the metC–cysK promoter region in Lactococcus lactis. Microbiology (United Kingdom), 2005, 151, 439-446.	0.7	31
51	The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. International Journal of Food Microbiology, 2013, 165, 43-50.	2.1	30
52	Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products. Frontiers in Microbiology, 2016, 7, 445.	1.5	28
53	Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress. BMC Microbiology, 2012, 12, 247.	1.3	27
54	Lactobacillus rossiae strain isolated from sourdough produces putrescine from arginine. Scientific Reports, 2018, 8, 3989.	1.6	27

#	Article	IF	CITATIONS
55	Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent. Food Microbiology, 2015, 48, 163-170.	2.1	26
56	An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis. Microbial Cell Factories, 2014, 13, 169.	1.9	22
57	Isolation and identification of tyramine-producing enterococci from human fecal samples. Canadian Journal of Microbiology, 2009, 55, 215-218.	0.8	21
58	A novel real-time polymerase chain reaction-based method for the detection and quantification of lactose-fermenting Enterobacteriaceae in the dairy and other food industries. Journal of Dairy Science, 2010, 93, 860-867.	1.4	21
59	Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Applied Microbiology and Biotechnology, 2014, 98, 6689-6700.	1.7	21
60	Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Frontiers in Microbiology, 2019, 9, .	1.5	21
61	Duplication of the \$beta;-galactosidase gene in some Lactobacillus plantarum strains. International Journal of Food Microbiology, 1999, 48, 113-123.	2.1	20
62	Early PCR detection of tyramine-producing bacteria during cheese production. Journal of Dairy Research, 2006, 73, 318-321.	0.7	20
63	AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration. Applied and Environmental Microbiology, 2015, 81, 6145-6157.	1.4	20
64	IS <i>256</i> abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen <i>Enterococcus faecalis</i> V583. Canadian Journal of Microbiology, 2015, 61, 517-519.	0.8	20
65	Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis. Microbial Cell Factories, 2015, 14, 208.	1.9	19
66	<i>Lactobacillus parabuchneri</i> produces histamine in refrigerated cheese at a temperatureâ€dependent rate. International Journal of Food Science and Technology, 2018, 53, 2342-2348.	1.3	19
67	Enterococcus faecalis Bacteriophage 156 Is an Effective Biotechnological Tool for Reducing the Presence of Tyramine and Putrescine in an Experimental Cheese Model. Frontiers in Microbiology, 2019, 10, 566.	1.5	19
68	Acquired macrolide resistance in the human intestinal strain Lactobacillus rhamnosus E41 associated with a transition mutation in 23S rRNA genes. International Journal of Antimicrobial Agents, 2007, 30, 341-344.	1.1	18
69	Characterization of the tyramine-producing pathway in Sporolactobacillus sp. P3J. Microbiology (United Kingdom), 2011, 157, 1841-1849.	0.7	18
70	The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthesis cluster of Enterococcus duransis transcriptionally regulated by tyrosine concentration and extracellular pH. BMC Microbiology, 2012, 12, 23.	1.3	17
71	Histamine production in Lactobacillus vaginalis improves cell survival at low pH by counteracting the acidification of the cytosol. International Journal of Food Microbiology, 2020, 321, 108548.	2.1	17
72	Nisin-controlled expression of Norwalk virus VP60 protein in. FEMS Microbiology Letters, 2004, 237, 385-391.	0.7	16

#	Article	IF	CITATIONS
73	Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production. International Journal of Food Microbiology, 2016, 232, 1-6.	2.1	16
74	The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis. Frontiers in Microbiology, 2017, 8, 2107.	1.5	16
75	Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol. International Journal of Food Microbiology, 2016, 236, 83-89.	2.1	15
76	Two structural genes are encoding malate synthase isoenzymes inSaccharomycescerevisiae. FEBS Letters, 1993, 320, 271-275.	1.3	14
77	Isolation of an exopolysaccharide-producing Streptococcus thermophilus from Algerian raw cow milk. European Food Research and Technology, 2012, 234, 119-125.	1.6	14
78	Mastitis Modifies the Biogenic Amines Profile in Human Milk, with Significant Changes in the Presence of Histamine, Putrescine and Spermine. PLoS ONE, 2016, 11, e0162426.	1.1	14
79	Draft Genome Sequence of the Tyramine Producer Enterococcus durans Strain IPLA 655. Genome Announcements, 2013, 1, .	0.8	11
80	Isolation and Characterization of Enterococcus faecalis-Infecting Bacteriophages From Different Cheese Types. Frontiers in Microbiology, 2020, 11, 592172.	1.5	11
81	Genome Sequence Analysis of the Biogenic Amine-Producing Strain Lactococcus lactis subsp. <i>cremoris</i> CECT 8666 (Formerly CE2-14). Genome Announcements, 2014, 2, .	0.8	9
82	Extraction of RNA from fermented milk products for in situ gene expression analysis. Analytical Biochemistry, 2010, 400, 307-309.	1.1	8
83	Genome Sequence Analysis of the Biogenic Amine-Degrading Strain Lactobacillus casei 5b. Genome Announcements, 2014, 2, .	0.8	8
84	Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583. Genomics Data, 2016, 9, 67-69.	1.3	7
85	Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88. Genome Announcements, 2013, 1, .	0.8	5
86	Solubilization of gliadins for use as a source of nitrogen in the selection of bacteria with gliadinase activity. Food Chemistry, 2015, 168, 439-444.	4.2	5
87	Nucleotide sequence alignment of hdcA from Gram-positive bacteria. Data in Brief, 2016, 6, 674-679.	0.5	5
88	Screening sourdough samples for gliadin-degrading activity revealed <i>Lactobacillus casei</i> strains able to individually metabolize the coeliac-disease-related 33-mer peptide. Canadian Journal of Microbiology, 2016, 62, 422-430.	0.8	4
89	Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine. Genomics Data, 2016, 7, 112-114.	1.3	4
90	Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666. Genomics Data, 2015, 6, 228-230.	1.3	3

#	Article	IF	CITATIONS
91	Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes. Data in Brief, 2016, 9, 398-400.	0.5	2
92	Construction and characterization of a double mutant of Enterococcus faecalis that does not produce biogenic amines. Scientific Reports, 2019, 9, 16881.	1.6	2
93	Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. <i>lactis</i> 1AA59. Genome Announcements, 2015, 3, .	0.8	Ο
94	Aminas biógenas en alimentos: métodos moleculares para la detección e identificación de bacterias productoras. Arbor, 2020, 196, 545.	0.1	0