Stefan Guldin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4508697/stefan-guldin-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67
papers

2,537
citations

h-index

50
g-index

109
ext. papers

2,892
ext. citations

9.6
avg, IF

L-index

#	Paper	IF	Citations
67	Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring <i>Analytical Chemistry</i> , 2022 ,	7.8	2
66	Block Copolymer Directed Metamaterials and Metasurfaces for Novel Optical Devices. <i>Advanced Optical Materials</i> , 2021 , 9, 2100175	8.1	11
65	Fluorinated Metal-Organic Coatings with Selective Wettability. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9972-9981	16.4	7
64	Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture. <i>Soft Matter</i> , 2021 , 17, 947-954	3.6	3
63	Nanostructure Dependence of T-Nb 2 O 5 Intercalation Pseudocapacitance Probed Using Tunable Isomorphic Architectures. <i>Advanced Functional Materials</i> , 2021 , 31, 2007826	15.6	10
62	Pseudocapacitance: Nanostructure Dependence of T-Nb2O5 Intercalation Pseudocapacitance Probed Using Tunable Isomorphic Architectures (Adv. Funct. Mater. 1/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170005	15.6	
61	Chemical vapour deposition (CVD) of nickel oxide using the novel nickel dialkylaminoalkoxide precursor [Ni(dmamp†] (dmampT= 2-dimethylamino-2-methyl-1-propanolate) RSC Advances, 2021 , 11, 22199-22205	3.7	
60	Supramolecular packing of alkyl substituted Janus face all- 2,3,4,5,6-pentafluorocyclohexyl motifs. <i>Chemical Science</i> , 2021 , 12, 9712-9719	9.4	2
59	Refractive indices of MBE-grown AlxGa(1 \square)As ternary alloys in the transparent wavelength region. <i>AIP Advances</i> , 2021 , 11, 025327	1.5	14
58	Comparative characterisation of non-monodisperse gold nanoparticle populations by X-ray scattering and electron microscopy. <i>Nanoscale</i> , 2020 , 12, 12007-12013	7.7	3
57	Synthetic guidelines for the precision engineering of gold nanoparticles. <i>Current Opinion in Chemical Engineering</i> , 2020 , 29, 59-66	5.4	
56	Structural Characterization of Mesoporous Thin Film Architectures: A Tutorial Overview. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2020 , 12, 5195-5208	9.5	10
55	Acoustic Immunosensing of Exosomes Using a Quartz Crystal Microbalance with Dissipation Monitoring. <i>Analytical Chemistry</i> , 2020 , 92, 4082-4093	7.8	32
54	High-Performance Planar Thin Film Thermochromic Window via Dynamic Optical Impedance Matching. <i>ACS Applied Materials & Discreta (Materials & Materials & Material</i>	9.5	11
53	Information Entropy as a Reliable Measure of Nanoparticle Dispersity. <i>Chemistry of Materials</i> , 2020 , 32, 3701-3706	9.6	12
52	Humidity-Tolerant Ultrathin NiO Gas-Sensing Films. ACS Sensors, 2020, 5, 1389-1397	9.2	16
51	All-Silicone-based Distributed Bragg Reflectors for Efficient Flexible Luminescent Solar Concentrators. <i>Nano Energy</i> , 2020 , 70, 104507	17.1	16

(2016-2020)

50	Microfluidics of binary liquid mixtures with temperature-dependent miscibility. <i>Molecular Systems Design and Engineering</i> , 2020 , 5, 358-365	4.6	3
49	Fractionation of block copolymers for pore size control and reduced dispersity in mesoporous inorganic thin films. <i>Nanoscale</i> , 2020 , 12, 18455-18462	7.7	4
48	Probing the interaction of nanoparticles with small molecules in real time via quartz crystal microbalance monitoring. <i>Nanoscale</i> , 2019 , 11, 11107-11113	7.7	4
47	Multidimensional Characterization of Mixed Ligand Nanoparticles Using Small Angle Neutron Scattering. <i>Chemistry of Materials</i> , 2019 , 31, 6750-6758	9.6	6
46	Use of a New Non-Pyrophoric Liquid Aluminum Precursor for Atomic Layer Deposition. <i>Materials</i> , 2019 , 12,	3.5	2
45	Photocatalytic Template Removal by Non-Ozone-Generating UV Irradiation for the Fabrication of Well-Defined Mesoporous Inorganic Coatings. <i>ACS Applied Materials & Design Coating Coat</i>	193514	9
44	Recent developments in Pickering emulsions for biomedical applications. <i>Current Opinion in Colloid and Interface Science</i> , 2019 , 39, 173-189	7.6	66
43	Tuning Pore Dimensions of Mesoporous Inorganic Films by Homopolymer Swelling. <i>Langmuir</i> , 2019 , 35, 14074-14082	4	4
42	Application of the Spatial Distribution Function to Colloidal Ordering. <i>Langmuir</i> , 2019 , 35, 16605-16611	4	7
41	Optimising Light Source Positioning for Even and Flux-Efficient Illumination. <i>Journal of Open Source Software</i> , 2019 , 4, 1392	5.2	
40	Robust Operation of Mesoporous Antireflective Coatings under Variable Ambient Conditions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 10315-10321	9.5	19
39	pH-Mediated molecular differentiation for fluorimetric quantification of chemotherapeutic drugs in human plasma. <i>Chemical Communications</i> , 2018 , 54, 1485-1488	5.8	7
38	Phase behaviour and applications of a binary liquid mixture of methanol and a thermotropic liquid crystal. <i>Soft Matter</i> , 2018 , 14, 4615-4620	3.6	14
37	A combined experimental and theoretical study into the performance of multilayer vanadium dioxide nanocomposites for energy saving applications 2018 ,		3
36	A Toolkit to Quantify Target Compounds in Thin-Layer-Chromatography Experiments. <i>Journal of Chemical Education</i> , 2018 , 95, 2191-2196	2.4	7
35	Noble metal nanoparticles with anisotropy in shape and surface functionality for biomedical applications 2018 , 313-333		2
34	A Versatile AuNP Synthetic Platform for Decoupled Control of Size and Surface Composition. <i>Langmuir</i> , 2018 , 34, 6820-6826	4	13
33	Freestanding Ultrathin Nanoparticle Membranes Assembled at Transient Liquid I liquid Interfaces. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600191	4.6	15

32	Ordered Mesoporous to Macroporous Oxides with Tunable Isomorphic Architectures: Solution Criteria for Persistent Micelle Templates. <i>Chemistry of Materials</i> , 2016 , 28, 1653-1667	9.6	45
31	Controlling the coassembly of highly amphiphilic block copolymers with a hydrolytic sol by solvent exchange. <i>RSC Advances</i> , 2015 , 5, 22499-22502	3.7	4
30	Block copolymer self-assembly for nanophotonics. <i>Chemical Society Reviews</i> , 2015 , 44, 5076-91	58.5	248
29	Ordered mesoporous titania from highly amphiphilic block copolymers: tuned solution conditions enable highly ordered morphologies and ultra-large mesopores. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11478-11492	13	31
28	Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices. <i>Advanced Materials</i> , 2014 , 26, 4013-30	24	133
27	High-Surface-Area Porous Platinum Electrodes for Enhanced Charge Transfer. <i>Advanced Energy Materials</i> , 2014 , 4, 1400510	21.8	22
26	Gyroid-Structured 3D ZnO Networks Made by Atomic Layer Deposition. <i>Advanced Functional Materials</i> , 2014 , 24, 863-872	15.6	61
25	Soft matter design principles for inorganic photonic nanoarchitectures in photovoltaics, colorimetric sensing, and self-cleaning antireflective coatings 2014 ,		1
24	Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013 , 4, 698-703	6.4	103
23	Low temperature crystallisation of mesoporous TiO2. <i>Nanoscale</i> , 2013 , 5, 10518-24	7.7	18
22	Self-cleaning antireflective optical coatings. <i>Nano Letters</i> , 2013 , 13, 5329-35	11.5	124
21	Inorganic Nanoarchitectures by Organic Self-Assembly. Springer Theses, 2013,	0.1	5
20	Optical Aspects of Thin Films and Interfaces. Springer Theses, 2013, 19-32	0.1	2
19	Block Copolymer-Induced Structure Control for Inorganic Nanomaterials. <i>Springer Theses</i> , 2013 , 71-85	0.1	
18	Crystal Growth in Block Copolymer-Derived Mesoporous TiO(_2). Springer Theses, 2013, 87-100	0.1	
17	Tunable Mesoporous Bragg Reflectors Based on Block Copolymer Self-Assembly. <i>Springer Theses</i> , 2013 , 117-127	0.1	1
16	Thin Film Processing of Block Copolymer Structure-Directed Inorganic Materials. <i>Springer Theses</i> , 2013 , 101-115	0.1	
15	Dye-Sensitised Solar Cell Based on a Three-Dimensional Photonic Crystal. <i>Springer Theses</i> , 2013 , 129-14	· 0 o.1	

LIST OF PUBLICATIONS

14	A 3D optical metamaterial made by self-assembly. <i>Advanced Materials</i> , 2012 , 24, OP23-7	24	245
13	Layer-by-layer formation of block-copolymer-derived TiO(2) for solid-state dye-sensitized solar cells. <i>Small</i> , 2012 , 8, 432-40	11	32
12	Biomimetic layer-by-layer assembly of artificial nacre. <i>Nature Communications</i> , 2012 , 3, 966	17.4	264
11	Pore Filling of Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells Determined Via Optical Reflectometry. <i>Advanced Functional Materials</i> , 2012 , 22, 5010-5019	15.6	72
10	Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2: High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2012 , 2, 676-682	21.8	53
9	Tunable mesoporous bragg reflectors based on block-copolymer self-assembly. <i>Advanced Materials</i> , 2011 , 23, 3664-8	24	80
8	Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO2 crystallisation. <i>Energy and Environmental Science</i> , 2011 , 4, 225-233	35.4	83
7	Mesoporous Bragg reflectors: block-copolymer self-assembly leads to building blocks with well defined continuous pores and high control over optical properties 2011 ,		2
6	Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells 2011 ,		3
6 5		11.5	3 295
	2011,	11.5	
5	Dye-sensitized solar cell based on a three-dimensional photonic crystal. <i>Nano Letters</i> , 2010 , 10, 2303-9 Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for		295 40
5	Dye-sensitized solar cell based on a three-dimensional photonic crystal. <i>Nano Letters</i> , 2010 , 10, 2303-9 Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO2. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1261-1268 Control of Solid-State Dye-Sensitized Solar Cell Performance by Block-Copolymer-Directed TiO2		295 40