Carolina Gimbert-Suriñach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4508335/publications.pdf

Version: 2024-02-01

55 2,720 23 51 papers citations h-index g-index 3610

58 58 58 3619
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Molecular artificial photosynthesis. Chemical Society Reviews, 2014, 43, 7501-7519.	38.1	769
2	The development of molecular water oxidation catalysts. Nature Reviews Chemistry, 2019, 3, 331-341.	30.2	230
3	How to make an efficient and robust molecular catalyst for water oxidation. Chemical Society Reviews, 2017, 46, 6088-6098.	38.1	201
4	Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey. Chemical Reviews, 2019, 119, 3453-3471.	47.7	148
5	Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems using Molecular Catalysts and Quantum Dots. Journal of the American Chemical Society, 2014, 136, 7655-7661.	13.7	131
6	Electronic π-Delocalization Boosts Catalytic Water Oxidation by Cu(II) Molecular Catalysts Heterogenized on Graphene Sheets. Journal of the American Chemical Society, 2017, 139, 12907-12910.	13.7	108
7	Michael additions catalyzed by phosphines. An overlooked synthetic method. Tetrahedron, 2005, 61, 8598-8605.	1.9	92
8	Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water. Journal of the American Chemical Society, 2016, 138, 10586-10596.	13.7	77
9	Second Coordination Sphere Effects in an Evolved Ru Complex Based on Highly Adaptable Ligand Results in Rapid Water Oxidation Catalysis. Journal of the American Chemical Society, 2020, 142, 5068-5077.	13.7	69
10	Can Ni Complexes Behave as Molecular Water Oxidation Catalysts?. ACS Catalysis, 2019, 9, 3936-3945.	11.2	64
11	Redox Metal–Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH with Macrocyclic Copper Complexes. Journal of the American Chemical Society, 2020, 142, 17434-17446.	13.7	59
12	Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nature Chemistry, 2020, 12, 1060-1066.	13.6	54
13	Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts. ACS Catalysis, 2017, 7, 6525-6532.	11.2	50
14	Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear Co–Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society, 2016, 138, 15291-15294.	13.7	49
15	Tributylphosphine, excellent organocatalyst for conjugate additions of non-nucleophilic N-containing compounds. Tetrahedron, 2007, 63, 8305-8310.	1.9	46
16	Dinuclear Cobalt Complexes with a Decadentate Ligand Scaffold: Hydrogen Evolution and Oxygen Reduction Catalysis. Chemistry - A European Journal, 2016, 22, 361-369.	3.3	36
17	Elucidating the Nature of the Excited State of a Heteroleptic Copper Photosensitizer by using Timeâ€Resolved Xâ€ray Absorption Spectroscopy. Chemistry - A European Journal, 2018, 24, 6464-6472.	3.3	34
18	Ruthenium Water Oxidation Catalysts based on Pentapyridyl Ligands. ChemSusChem, 2017, 10, 4517-4525.	6.8	32

#	Article	IF	Citations
19	A Straightforward Synthesis of Benzothiazines. Organic Letters, 2009, 11, 269-271.	4.6	31
20	CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices. ACS Applied Materials & Devices, 2016, 8, 696-702.	8.0	29
21	Behavior of Ru–bda Waterâ€Oxidation Catalysts in Low Oxidation States. Chemistry - A European Journal, 2018, 24, 12838-12847.	3.3	27
22	Magnetically-actuated mesoporous nanowires for enhanced heterogeneous catalysis. Applied Catalysis B: Environmental, 2017, 217, 81-91.	20.2	26
23	Bridgehead Hydrogen Atoms Are Important: Unusual Electrochemistry and Proton Reduction at Iron Dimers with Ferrocenyl-Substituted Phosphido Bridges. Organometallics, 2012, 31, 3480-3491.	2.3	25
24	Neutral Water Splitting Catalysis with a High FF Triple Junction Polymer Cell. ACS Catalysis, 2016, 6, 3310-3316.	11.2	24
25	Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells. Journal of Materials Chemistry A, 2017, 5, 1996-2003.	10.3	20
26	A hybrid molecular photoanode for efficient light-induced water oxidation. Sustainable Energy and Fuels, 2018, 2, 1979-1985.	4.9	20
27	Electrochemically Driven Water Oxidation by a Highly Active Rutheniumâ€Based Catalyst. ChemSusChem, 2019, 12, 2251-2262.	6.8	20
28	Analysis of the Active Species Responsible for Water Oxidation Using a Pentanuclear Fe Complex. IScience, 2020, 23, 101378.	4.1	19
29	Hydrogenative Carbon Dioxide Reduction Catalyzed by Mononuclear Ruthenium Polypyridyl Complexes: Discerning between Electronic and Steric Effects. ACS Catalysis, 2017, 7, 5932-5940.	11.2	16
30	High Solar-to-Hydrogen Conversion Efficiency at pH 7 Based on a PV-EC Cell with an Oligomeric Molecular Anode. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55856-55864.	8.0	16
31	Synthesis, Characterization, and Water Oxidation Activity of Isomeric Ru Complexes. Inorganic Chemistry, 2021, 60, 5791-5803.	4.0	16
32	Electronic, mechanistic, and structural factors that influence the performance of molecular water oxidation catalysts anchored on electrode surfaces. Current Opinion in Electrochemistry, 2019, 15, 140-147.	4.8	15
33	Electrochemically and Photochemically Induced Hydrogen Evolution Catalysis with Cobalt Tetraazamacrocycles Occurs Through Different Pathways. ChemSusChem, 2020, 13, 2745-2752.	6.8	14
34	Quantum Chemical Study of the Mechanism of Water Oxidation Catalyzed by a Heterotrinuclear Ru ₂ Mn Complex. ChemSusChem, 2019, 12, 1101-1110.	6.8	13
35	Catalytic Oxidation of Water to Dioxygen by Mononuclear Ru Complexes Bearing a 2,6â€Pyridinedicarboxylato Ligand. ChemSusChem, 2019, 12, 1949-1957.	6.8	13
36	Thermomorphic fluorous phosphines as organocatalysts for Michael addition reactions. Tetrahedron Letters, 2010, 51, 4662-4665.	1.4	12

#	Article	IF	CITATIONS
37	Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts. Dalton Transactions, 2017, 46, 3207-3222.	3.3	12
38	Electrochemical and Resonance Raman Spectroscopic Studies of Waterâ€Oxidizing Ruthenium Terpyridyl–Bipyridyl Complexes. ChemSusChem, 2017, 10, 551-561.	6.8	11
39	Light-driven water oxidation using hybrid photosensitizer-decorated Co3O4 nanoparticles. Materials Today Energy, 2018, 9, 506-515.	4.7	11
40	A Ru-bda Complex with a Dangling Carboxylate Group: Synthesis and Electrochemical Properties. Inorganic Chemistry, 2020, 59, 4443-4452.	4.0	10
41	Four Soft Donors and a Hard Centre: Rhodium Complexes of a Novel Tetrakis(NHC)-Encapsulated Crown Ether Ligand. European Journal of Inorganic Chemistry, 2011, 2011, 4331-4337.	2.0	9
42	Palladium(II) complexes of imidazolin-2-ylidene N-heterocyclic carbene ligands with redox-active dimethoxyphenyl or (hydro)quinonyl substituents. Inorganica Chimica Acta, 2011, 370, 374-381.	2.4	9
43	Anode Based on a Molecular Ru Water Oxidation Catalyst Covalently Bonded to Polythiophene. ACS Applied Energy Materials, 2021, 4, 9775-9782.	5.1	9
44	Multi-layered photocathodes based on Cu2ZnSnSe4 absorber and MoS2 catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 24320-24327.	10.3	8
45	Synthetic strategies to incorporate Ru-terpyridyl water oxidation catalysts into MOFs: direct synthesis <i>vs.</i> post-synthetic approach. Dalton Transactions, 2020, 49, 13753-13759.	3.3	7
46	A broad view on the complexity involved in water oxidation catalysis based on Ru–bpn complexes. Dalton Transactions, 2020, 49, 17375-17387.	3.3	7
47	Synthesis, Electrochemical Characterization, and Water Oxidation Chemistry of Ru Complexes Containing the 2,6-Pyridinedicarboxylato Ligand. Inorganic Chemistry, 2020, 59, 11432-11441.	4.0	6
48	Nanocrystal–Molecular Hybrids for the Photocatalytic Oxidation of Water. ACS Applied Energy Materials, 2020, 3, 10008-10014.	5.1	5
49	Synthesis of chiral iron-based ionic liquids: modelling stable hybrid materials. New Journal of Chemistry, 2020, 44, 6375-6383.	2.8	3
50	Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker. Materials Advances, 2022, 3, 4227-4234.	5.4	3
51	Catalytic H2 Evolution with CoO, Co(OH)2 and CoO(OH) Nanoparticles Generated from a Molecular Polynuclear Co Complex. European Journal of Inorganic Chemistry, 2018, 2018, 1499-1505.	2.0	2
52	Robust and Efficient Screen-Printed Molecular Anodes with Anchored Water Oxidation Catalysts. ACS Applied Energy Materials, 2021, 4, 10534-10541.	5.1	2
53	Flexible dinucleating N,N,N-tridentate ligands based on a xanthene scaffold. Inorganica Chimica Acta, 2013, 399, 55-61.	2.4	1
54	trans-Chloridobis(4-methylpyridine-κN)(4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine-κ3N,N′ hexafluoridophosphate acetone monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m300-m300.	² ,N′′) 0.2)ruthenium(II) O

#	Article	IF	CITATIONS
55	A dimer of bis(N-heterocyclic carbene)rhodium(I) centres spanned by a dibenzo-18-crown-6 bridge from synchrotron radiation. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m47-m48.	0.2	O