
Aaron E Maxwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4508240/publications.pdf Version: 2024-02-01

AADON F MAXWELL

#	Article	IF	CITATIONS
1	Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 2018, 39, 2784-2817.	1.3	1,036
2	Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sensing, 2019, 11, 185.	1.8	147
3	Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 1: Literature Review. Remote Sensing, 2021, 13, 2450.	1.8	88
4	Effects of Training Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area High-Resolution Remotely Sensed Data. Remote Sensing, 2021, 13, 368.	1.8	67
5	Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations. Remote Sensing, 2019, 11, 1409.	1.8	49
6	Mapping the Topographic Features of Mining-Related Valley Fills Using Mask R-CNN Deep Learning and Digital Elevation Data. Remote Sensing, 2020, 12, 547.	1.8	48
7	Predicting Palustrine Wetland Probability Using Random Forest Machine Learning and Digital Elevation Data-Derived Terrain Variables. Photogrammetric Engineering and Remote Sensing, 2016, 82, 437-447.	0.3	47
8	Land Cover Classification and Feature Extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A Review. Photogrammetric Engineering and Remote Sensing, 2017, 83, 737-747.	0.3	42
9	Combining RapidEye Satellite Imagery and Lidar for Mapping of Mining and Mine Reclamation. Photogrammetric Engineering and Remote Sensing, 2014, 80, 179-189.	0.3	41
10	Thematic Classification Accuracy Assessment with Inherently Uncertain Boundaries: An Argument for Center-Weighted Accuracy Assessment Metrics. Remote Sensing, 2020, 12, 1905.	1.8	32
11	Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 2: Recommendations and Best Practices. Remote Sensing, 2021, 13, 2591.	1.8	32
12	Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps. Remote Sensing, 2020, 12, 4145.	1.8	30
13	Scenario analysis predicts context-dependent stream response to landuse change in a heavily mined central Appalachian watershed. Freshwater Science, 2013, 32, 1246-1259.	0.9	28
14	Differentiating mine-reclaimed grasslands from spectrally similar land cover using terrain variables and object-based machine learning classification. International Journal of Remote Sensing, 2015, 36, 4384-4410.	1.3	28
15	Land-surface parameters for spatial predictive mapping and modeling. Earth-Science Reviews, 2022, 226, 103944.	4.0	26
16	Slope Failure Prediction Using Random Forest Machine Learning and LiDAR in an Eroded Folded Mountain Belt. Remote Sensing, 2020, 12, 486.	1.8	24
17	Explainable Boosting Machines for Slope Failure Spatial Predictive Modeling. Remote Sensing, 2021, 13, 4991.	1.8	20
18	Combining high spatial resolution multi-temporal satellite data with leaf-on LiDAR to enhance tree species discrimination at the crown level. International Journal of Remote Sensing, 2018, 39, 9054-9072.	1.3	19

AARON E MAXWELL

#	Article	IF	CITATIONS
19	Assessing landform alterations induced by mountaintop mining. Natural Science, 2013, 05, 229-237.	0.2	14
20	Modeling Critical Forest Habitat in the Southern Coal Fields of West Virginia. International Journal of Ecology, 2012, 2012, 1-10.	0.3	11
21	Complex contaminant mixtures in multistressor Appalachian riverscapes. Environmental Toxicology and Chemistry, 2015, 34, 2603-2610.	2.2	11
22	Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia. PLoS ONE, 2015, 10, e0128813.	1.1	11
23	Is high spatial resolution DEM data necessary for mapping palustrine wetlands?. International Journal of Remote Sensing, 2019, 40, 118-137.	1.3	10
24	Estimation of Plot-Level Burn Severity Using Terrestrial Laser Scanning. Remote Sensing, 2021, 13, 4168.	1.8	7
25	Landscape Changes in the Southern Coalfields of West Virginia: Multi-Level Intensity Analysis and Surface Mining Transitions in the Headwaters of the Coal River from 1976 to 2016. Land, 2021, 10, 748.	1.2	5
26	Assessing the Generalization of Machine Learning-Based Slope Failure Prediction to New Geographic Extents. ISPRS International Journal of Geo-Information, 2021, 10, 293.	1.4	4
27	Implementation of machine-learning classification in remote sensing: an applied review. , 0, .		1
28	Exploring golden eagle habitat preference using lidar-based canopy bulk density. Remote Sensing Letters, 2022, 13, 556-567.	0.6	1