Manabu Tokeshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4508060/publications.pdf

Version: 2024-02-01

266 papers 10,760 citations

²⁶⁶³⁰
56
h-index

93 g-index

273 all docs

273 docs citations

273 times ranked 7678 citing authors

#	Article	IF	CITATIONS
1	Determination of blood lithium-ion concentration using digital microfluidic whole-blood separation and preloaded paper sensors. Biosensors and Bioelectronics, 2022, 195, 113631.	10.1	17
2	Electrochemical enzyme-based blood ATP and lactate sensor for a rapid and straightforward evaluation of illness severity. Biosensors and Bioelectronics, 2022, 198, 113832.	10.1	16
3	PEGylation of silver nanoparticles by physisorption of cyclic poly(ethylene glycol) for enhanced dispersion stability, antimicrobial activity, and cytotoxicity. Nanoscale Advances, 2022, 4, 532-545.	4.6	9
4	Enzyme kinetics in confined geometries at the single enzyme level. Analyst, The, 2022, 147, 1375-1384.	3 . 5	3
5	Production of siRNA-Loaded Lipid Nanoparticles using a Microfluidic Device. Journal of Visualized Experiments, 2022, , .	0.3	7
6	Dimethoxytriadinylation LC–MS/MS of Novichok A-Series Degradation Products in Human Urine. Analytical Chemistry, 2022, 94, 4658-4665.	6.5	8
7	Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. Journal of Controlled Release, 2022, 344, 80-96.	9.9	92
8	Microfluidic Device-Enabled Mass Production of Lipid-Based Nanoparticles for Applications in Nanomedicine and Cosmetics. ACS Applied Nano Materials, 2022, 5, 7867-7876.	5.0	10
9	On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic device. Journal of Controlled Release, 2022, 348, 648-659.	9.9	18
10	One-step non-competitive fluorescence polarization immunoassay based on a Fab fragment for C-reactive protein quantification. Sensors and Actuators B: Chemical, 2021, 326, 128982.	7.8	18
11	Rapid, sensitive universal paper-based device enhances competitive immunoassays of small molecules. Analytica Chimica Acta, 2021, 1144, 85-95.	5.4	19
12	Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. Journal of Controlled Release, 2021, 330, 61-71.	9.9	54
13	Three-dimensional, symmetrically assembled microfluidic device for lipid nanoparticle production. RSC Advances, 2021, 11, 1430-1439.	3.6	18
14	Non-competitive fluorescence polarization immunoassay for detection of H5 avian influenza virus using a portable analyzer. Analytical and Bioanalytical Chemistry, 2021, 413, 4619-4623.	3.7	8
15	Dip-Type Paper-Based Analytical Device for Straightforward Quantitative Detection without Precise Sample Introduction. ACS Sensors, 2021, 6, 1094-1102.	7.8	13
16	Simple Approach for Fluorescence Signal Amplification Utilizing a Poly(vinyl alcohol)-Based Polymer Structure in a Microchannel. ACS Omega, 2021, 6, 8340-8345.	3 . 5	2
17	Delivery of Oligonucleotides Using a Self-Degradable Lipid-Like Material. Pharmaceutics, 2021, 13, 544.	4.5	20
18	Paper-Based Analytical Device for the On-Site Detection of Nerve Agents. ACS Applied Bio Materials, 2021, 4, 6512-6518.	4.6	12

#	Article	IF	CITATIONS
19	Using a Paper-Based Analytical Device Designed for Remote Learning Environments to Achieve Simple Quantitative Colorimetry without Micropipettes. Journal of Chemical Education, 2021, 98, 3050-3054.	2.3	6
20	Facile and rapid detection of SARS-CoV-2 antibody based on a noncompetitive fluorescence polarization immunoassay in human serum samples. Biosensors and Bioelectronics, 2021, 190, 113414.	10.1	12
21	One-Step Production Using a Microfluidic Device of Highly Biocompatible Size-Controlled Noncationic Exosome-like Nanoparticles for RNA Delivery. ACS Applied Bio Materials, 2021, 4, 1783-1793.	4.6	12
22	Microchip Immunoassays for Monitoring Renal Function: Rapid, Low-Cost, and Highly Sensitive Quantification of Urinary Biomarkers of Diabetic Nephropathy. Micromachines, 2021, 12, 1353.	2.9	0
23	Topology-Dependent Interaction of Cyclic Poly(ethylene glycol) Complexed with Gold Nanoparticles against Bovine Serum Albumin for a Colorimetric Change. Langmuir, 2021, , .	3.5	2
24	Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles. Acta Biomaterialia, 2020, 102, 341-350.	8.3	35
25	The use of design of experiments with multiple responses to determine optimal formulations for in vivo hepatic mRNA delivery. Journal of Controlled Release, 2020, 327, 467-476.	9.9	35
26	Noncompetitive Fluorescence Polarization Immunoassay for Protein Determination. Analytical Chemistry, 2020, 92, 14393-14397.	6.5	11
27	Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. ACS Applied Materials & Interfaces, 2020, 12, 34011-34020.	8.0	44
28	Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50 3 105
29	Real-Time Measurement of Protein Crystal Growth Rates within the Microfluidic Device to Understand the Microspace Effect. ACS Omega, 2020, 5, 17199-17206.	3.5	8
30	Silica Nanopillar Arrays for Monitoring Diffraction-Based Label-Free Biomolecule Separation. ACS Applied Nano Materials, 2020, 3, 8810-8816.	5.0	6
31	Room-temperature crystallography using a microfluidic protein crystal array device and its application to protein–ligand complex structure analysis. Chemical Science, 2020, 11, 9072-9087.	7.4	18
32	Observation of Ethanol-Induced Condensation and Decondensation Processes at a Single-DNA Molecular Level in Microfluidic Devices Equipped with a Rapid Solution Exchange System. Analytical Chemistry, 2020, 92, 9132-9137.	6.5	3
33	The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution. Molecular Pharmaceutics, 2020, 17, 944-953.	4.6	98
34	Rapid detection of anti-H5 avian influenza virus antibody by fluorescence polarization immunoassay using a portable fluorescence polarization analyzer. Sensors and Actuators B: Chemical, 2020, 316, 128160.	7.8	25
35	Paper-Based Device for the Facile Colorimetric Determination of Lithium Ions in Human Whole Blood. ACS Sensors, 2020, 5, 1287-1294.	7.8	36
36	Development of an immuno-wall device for the rapid and sensitive detection of EGFR mutations in tumor tissues resected from lung cancer patients. PLoS ONE, 2020, 15, e0241422.	2.5	3

#	Article	IF	Citations
37	Development of Microfluidic Devices for Precise Size Control of Lipid Nanoparticles. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2020, 27, 154-156.	0.0	O
38	Development of a Paper-based Analytical Chip for the Detection of Bacterial 16S rRNA in Wastewater Samples. Bunseki Kagaku, 2020, 69, 715-722.	0.2	0
39	An Electrochemical Sensor Based on Structure Switching of Dithiol-modified Aptamer for Simple Detection of Ochratoxin A. Analytical Sciences, 2019, 35, 1221-1226.	1.6	15
40	Rapid, Sensitive, and Selective Detection of H5 Hemagglutinin from Avian Influenza Virus Using an Immunowall Device. ACS Omega, 2019, 4, 16683-16688.	3.5	19
41	Development of a microdevice for facile analysis of theophylline in whole blood by a cloned enzyme donor immunoassay. Lab on A Chip, 2019, 19, 233-240.	6.0	14
42	Sensitive fluorescent polarization immunoassay by optimizing synchronization mismatch condition. Sensors and Actuators B: Chemical, 2019, 285, 418-422.	7.8	10
43	Ultrasensitive detection of disease biomarkers using an immuno-wall device with enzymatic amplification. Analyst, The, 2019, 144, 4589-4595.	3.5	12
44	High-throughput fluorescence polarization immunoassay by using a portable fluorescence polarization imaging analyzer. Lab on A Chip, 2019, 19, 2581-2588.	6.0	20
45	A paper-based analytical device coupled with electrochemical detection for the determination of dexamethasone and prednisoloneÂin adulterated traditional medicines. Analytica Chimica Acta, 2019, 1078, 16-23.	5.4	40
46	A Concentric Ring Electrode for a Wallâ€jet Cell in a Microfluidic Device. Electroanalysis, 2019, 31, 1736-1743.	2.9	3
47	Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis, 2019, , 27-51.	0.1	0
48	The Use of a Microfluidic Device to Encapsulate a Poorly Water-Soluble Drug CoQ10 in Lipid Nanoparticles and an Attempt to Regulate Intracellular Trafficking to Reach Mitochondria. Journal of Pharmaceutical Sciences, 2019, 108, 2668-2676.	3.3	35
49	Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. Journal of Controlled Release, 2019, 295, 140-152.	9.9	104
50	Microfabrication and microfluidic devices for drug delivery. , 2019, , 123-136.		5
51	A compact fluorescence polarization analyzer with high-transmittance liquid crystal layer. Review of Scientific Instruments, 2018, 89, 024103.	1.3	15
52	Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. Analytical Sciences, 2018, 34, 39-44.	1.6	19
53	Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Advanced Drug Delivery Reviews, 2018, 128, 84-100.	13.7	215
54	Dynamic wettability of polyethylene glycol-modified poly(dimethylsiloxane) surfaces in an aqueous/organic two-phase system. Lab on A Chip, 2018, 18, 356-361.	6.0	12

#	Article	IF	Citations
55	Label-Free Electrochemical Sensor for Ochratoxin A Using a Microfabricated Electrode with Immobilized Aptamer. ACS Omega, 2018, 3, 16823-16830.	3.5	29
56	Recent Microdevice-Based Aptamer Sensors. Micromachines, 2018, 9, 202.	2.9	29
57	Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery. ACS Omega, 2018, 3, 5044-5051.	3.5	124
58	Microfluidic Devices for Drug Delivery Systems. Advanced Drug Delivery Reviews, 2018, 128, 1-2.	13.7	8
59	A millisecond micro-RNA separation technique by a hybrid structure of nanopillars and nanoslits. Scientific Reports, 2017, 7, 43877.	3.3	13
60	Optimization of the nanofluidic design for label-free detection of biomolecules using a nanowall array. Sensors and Actuators B: Chemical, 2017, 250, 39-43.	7.8	10
61	Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars. Methods in Molecular Biology, 2017, 1547, 49-56.	0.9	1
62	Microfluidic Immunoassay Devices as Next-Generation Cancer and Medical Diagnostics Platform. , 2017, , 305-322.		1
63	Using Laser Interference Lithography in the Fabrication of a Simplified Micro- and Nanofluidic Device for Label-free Detection. Analytical Sciences, 2017, 33, 1197-1199.	1.6	2
64	Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS ONE, 2017, 12, e0187962.	2.5	96
65	Microfluidic Autologous Serum Eye-Drops Preparation as a Potential Dry Eye Treatment. Micromachines, 2016, 7, 113.	2.9	1
66	Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis. Micromachines, 2016, 7, 86.	2.9	160
67	Micro/Nano Devices for Chemical Analysis. Micromachines, 2016, 7, 164.	2.9	7
68	Image analysis for a microfluidic paper-based analytical device using the CIE L*a*b* color system. Analyst, The, 2016, 141, 6507-6509.	3.5	54
69	An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas. Science and Technology of Advanced Materials, 2016, 17, 618-625.	6.1	12
70	A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space. CrystEngComm, 2016, 18, 7722-7727.	2.6	19
71	Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates. Analytical and Bioanalytical Chemistry, 2016, 408, 7559-7563.	3.7	9
72	Microfluidic Approaches for Protein Crystal Structure Analysis. Analytical Sciences, 2016, 32, 3-9.	1.6	38

#	Article	IF	Citations
73	An Easy-to-Use Polystyrene Microchip-based Cell Culture System. Analytical Sciences, 2016, 32, 349-353.	1.6	8
74	$3,3\hat{a}\in ^2$, $5,5\hat{a}\in ^2$ -Tetramethylbenzidine Oxidation on Paper Devices for Horseradish Peroxidase-based Assays. Analytical Sciences, 2016, 32, 815-818.	1.6	18
75	A competitive immunoassay system for microfluidic paper-based analytical detection of small size molecules. Analyst, The, 2016, 141, 6598-6603.	3.5	23
76	Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating. Scientific Reports, 2016, 6, 31642.	3.3	19
77	Rapid Detection of Cat Cystatin C (cCys-C) Using Immuno-Pillar Chips. Analytical Sciences, 2016, 32, 1359-1362.	1.6	3
78	Simple and sensitive colorimetric assay system for horseradish peroxidase using microfluidic paper-based devices. Sensors and Actuators B: Chemical, 2016, 236, 433-441.	7.8	53
79	Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. Journal of Controlled Release, 2016, 229, 48-57.	9.9	81
80	Formation of Lipid Nanoparticles and Elucidation of Formation Mechanism. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2016, 24, 74-78.	0.0	0
81	A Portable Liquid Chromatograph with a Battery-operated Compact Electroosmotic Pump and a Microfluidic Chip Device with a Reversed Phase Packed Column. Analytical Sciences, 2015, 31, 1163-1169.	1.6	38
82	Development of a Micro RNA Extraction Chip from Human Tumor Cells. Bunseki Kagaku, 2015, 64, 9-13.	0.2	1
83	Micropillars Fabricated on Poly(methyl methacrylate) Substrates for Separation of Microscale Objects. Analytical Sciences, 2015, 31, 1197-1200.	1.6	1
84	Development of High-performance Immuno-pillar Devices: Improvement of Antibody-immobilized Solid Support. Bunseki Kagaku, 2015, 64, 329-335.	0.2	2
85	A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure. RSC Advances, 2015, 5, 46181-46185.	3.6	74
86	Rapid, highly sensitive, and simultaneous detection of staphylococcal enterotoxins in milk by using immuno-pillar devices. Analytical Methods, 2015, 7, 5092-5095.	2.7	13
87	Hydrodynamic nonadhesive cell retention in a microfluidic circuit for stressless suspension culture. Analytical Methods, 2015, 7, 7264-7269.	2.7	2
88	A microfluidic cell culture system for monitoring of sequential changes in endothelial cells after heat stress. Thrombosis Research, 2015, 136, 328-334.	1.7	9
89	Carbon Nanotubes and Modern Nanoagriculture. , 2015, , 183-201.		14
90	An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst, The, 2015, 140, 6493-6499.	3.5	76

#	Article	IF	Citations
91	A Method of Cryoprotection for Protein Crystallography by Using a Microfluidic Chip and Its Application for in Situ X-ray Diffraction Measurements. Analytical Chemistry, 2015, 87, 4194-4200.	6.5	20
92	Arrangement of a Nanostructure Array To Control Equilibrium and Nonequilibrium Transports of Macromolecules. Nano Letters, 2015, 15, 3445-3451.	9.1	18
93	Fluorescence Polarization Measurement System Using a Liquid Crystal Layer and an Image Sensor. Analytical Chemistry, 2015, 87, 9647-9652.	6.5	14
94	Generation of ynolates via reductive lithiation using flow microreactors. Tetrahedron Letters, 2014, 55, 1822-1825.	1.4	20
95	On-Chip Analysis of Intermittent Molecular Encounters in Nuclease Digestion of Specific DNA Sequence. Biophysical Journal, 2014, 106, 699a-700a.	0.5	2
96	Microfluidic biosensor for the detection of DNA by fluorescence enhancement and the following streptavidin detection by fluorescence quenching. Biosensors and Bioelectronics, 2014, 51, 280-285.	10.1	28
97	Synthesis and Reactions of Ynolates via a Stop-Flow Method with a Flow Microreactor. Journal of Flow Chemistry, 2014, 4, 180-184.	1.9	4
98	Nanopillar array chip integrated with on-line stacking for fast DNA separation with high sensitivity and high resolution. Microfluidics and Nanofluidics, 2013, 14, 961-967.	2.2	12
99	Highly efficient electrochemical valence control of uranium using microfluidic chip equipped with microelectrodes. Microfluidics and Nanofluidics, 2013, 14, 989-994.	2.2	4
100	Enzyme-catalysed reaction for long-term fluorescent observation of single DNA molecules. RSC Advances, 2013, 3, 3237.	3.6	1
101	Establishment of portable immunoassay system for early diagnosis. , 2013, , .		0
102	Temperature-driven self-actuated microchamber sealing system for highly integrated microfluidic devices. Lab on A Chip, 2013, 13, 452-458.	6.0	7
103	Application of IgY to sandwich enzyme-linked immunosorbent assays, lateral flow devices, and immunopillar chips for detecting staphylococcal enterotoxins in milk and dairy products. Journal of Microbiological Methods, 2013, 92, 323-331.	1.6	43
104	DNA Manipulation and Separation in Sublithographic-Scale Nanowire Array. ACS Nano, 2013, 7, 3029-3035.	14.6	61
105	Parallel Real-Time PCR on a Chip for Genetic Tug-of-War (gTOW) Method. Analytical Sciences, 2013, 29, 367-371.	1.6	2
106	Aqueous Phase Synthesized CdSe Magic-Sized Clusters: Solution Composition Dependence of Adsorption Layer Structure. Journal of Nanoscience and Nanotechnology, 2012, 12, 539-546.	0.9	2
107	Confocal Microscopic Evaluation of Mixing Performance for Three-Dimensional Microfluidic Mixer. Analytical Sciences, 2012, 28, 57.	1.6	10
108	A deep microfluidic absorbance detection cell replicated from a thickly stacked SU-8 dry film resist mold. Analytical Methods, 2012, 4, 4368.	2.7	9

#	Article	IF	Citations
109	The plant cell uses carbon nanotubes to build tracheary elements. Integrative Biology (United) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10
110	Inkjet Injection of DNA Droplets for Microchannel Array Electrophoresis. Analytical Chemistry, 2012, 84, 9282-9286.	6.5	22
111	Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Advances, 2012, 2, 398-400.	3.6	40
112	Size-Selective Synthesis of Ultrasmall Hydrophilic CdSe Nanoparticles in Aqueous Solution at Room Temperature., 2012, 906, 125-141.		1
113	Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots. Biomaterials, 2012, 33, 2177-2186.	11.4	140
114	Fabrication of Functionalized Double-Lamellar Multifunctional Envelope-Type Nanodevices Using a Microfluidic Chip with a Chaotic Mixer Array. PLoS ONE, 2012, 7, e39057.	2.5	8
115	Online transient isotachophoresis concentration by the pseudo-terminating electrolyte buffer for the separation of DNA–aptamer and its thrombin complex in poly(methyl methacrylate) microchip. Analyst, The, 2011, 136, 1142.	3.5	17
116	Thermal lens detection device. Lab on A Chip, 2011, 11, 2990.	6.0	22
117	Microfluidic baker's transformation device for three-dimensional rapid mixing. Lab on A Chip, 2011, 11, 3356.	6.0	48
118	Estimation of the Distribution of Intravenously Injected Adipose Tissue-Derived Stem Cells Labeled with Quantum Dots in Mice Organs through the Determination of their Metallic Components by ICPMS. Analytical Chemistry, 2011, 83, 8252-8258.	6.5	25
119	Trafficking and Subcellular Localization of Multiwalled Carbon Nanotubes in Plant Cells. ACS Nano, 2011, 5, 493-499.	14.6	223
120	Extraction of Am(III) at the Interface of Organic-Aqueous Two-Layer Flow in a Microchannel. Journal of Nuclear Science and Technology, 2011, 48, 1313-1318.	1.3	27
121	Electroosmotic Flow in Microchannels with Nanostructures. ACS Nano, 2011, 5, 7775-7780.	14.6	46
122	DNA Separation in Nanowall Array Chips. Analytical Chemistry, 2011, 83, 6635-6640.	6.5	64
123	Functional Platform for Controlled Subcellular Distribution of Carbon Nanotubes. ACS Nano, 2011, 5, 9264-9270.	14.6	63
124	Tracking Degradations of Single DNA and Protein Molecules in Fluid. Biophysical Journal, 2011, 100, 151a-152a.	0.5	0
125	Label-Free Detection of DNA-Binding Proteins Based on Microfluidic Solid-State Molecular Beacon Sensor. Analytical Chemistry, 2011, 83, 3528-3532.	6.5	32
126	A touch-and-go lipid wrapping technique in microfluidic channels for rapid fabrication of multifunctional envelope-type gene delivery nanodevices. Lab on A Chip, 2011, 11, 3256.	6.0	19

#	Article	IF	CITATIONS
127	Aqueous phase-synthesized small CdSe quantum dots: adsorption layer structure and strong band-edge and surface trap emission. Journal of Nanoparticle Research, 2011, 13, 5781-5798.	1.9	17
128	A clinical trial for therapeutic drug monitoring using microchip-based fluorescence polarization immunoassay. Analytical and Bioanalytical Chemistry, 2011, 401, 2301-2305.	3.7	20
129	Rapid qualitative evaluation of DNA transcription factor NFâ€₽B by microchip electrophoretic mobility shift assay in mammalian cells. Electrophoresis, 2011, 32, 3241-3247.	2.4	6
130	Characterization of low viscosity polymer solutions for microchip electrophoresis of non-denatured proteins on plastic chips. Biomicrofluidics, 2011, 5, 044114.	2.4	17
131	A Probe Containing Two Base-discriminating Fluorescent (BDF) Nucleosides for SNP Typing. Chemistry Letters, 2010, 39, 116-117.	1.3	6
132	Aqueous Phase Synthesized CdSe Nanoparticles with Well-Defined Numbers of Constituent Atoms. Journal of Physical Chemistry C, 2010, 114, 18834-18840.	3.1	77
133	Size-Selective Growth and Stabilization of Small CdSe Nanoparticles in Aqueous Solution. ACS Nano, 2010, 4, 121-128.	14.6	100
134	Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials, 2010, 31, 4094-4103.	11.4	124
135	DNA separation by cholesterol-bearing pullulan nanogels. Biomicrofluidics, 2010, 4, 032210.	2.4	6
136	Immuno-pillar chip: a new platform for rapid and easy-to-use immunoassay. Lab on A Chip, 2010, 10, 3335.	6.0	88
137	Nanopillar, nanoball, and nanofibers for highly efficient analysis of biomolecules. Chemical Society Reviews, 2010, 39, 948.	38.1	57
138	Exceeding 20 000â€fold concentration of protein by the onâ€line isotachophoresis concentration in poly(methyl methacrylate) microchip. Electrophoresis, 2009, 30, 3250-3256.	2.4	41
139	Phase separation of gas–liquid and liquid–liquid microflows in microchips. Mikrochimica Acta, 2009, 164, 249-255.	5.0	36
140	Cell separation by the combination of microfluidics and optical trapping force on a microchip. Analytical and Bioanalytical Chemistry, 2009, 394, 277-283.	3.7	39
141	Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy. Lab on A Chip, 2009, 9, 966-971.	6.0	48
142	Velocity Gap Theory Developed for Magnifying Resolutions without Changing Separation Mechanisms or Separation Lengths. Analytical Chemistry, 2009, 81, 2745-2750.	6.5	8
143	Simultaneous Separation, Metering, and Dilution of Plasma from Human Whole Blood in a Microfluidic System. Analytical Chemistry, 2009, 81, 3194-3198.	6.5	80
144	A micro-ELISA system for the rapid and sensitive measurement of total and specific immunoglobulin E and clinical application to allergy diagnosis. Lab on A Chip, 2009, 9, 991.	6.0	81

#	Article	IF	Citations
145	Microchip-based Homogeneous Immunoassay Using a Cloned Enzyme Donor. Analytical Sciences, 2009, 25, 149-151.	1.6	11
146	Luminescence of Cup-Stacked Carbon Nanotubes and Its Application to Microchip Electrophoresis. Bunseki Kagaku, 2009, 58, 517-521.	0.2	0
147	On-chip fabrication of mutifunctional envelope-type nanodevices for gene delivery. Analytical and Bioanalytical Chemistry, 2008, 391, 2729-2733.	3.7	15
148	Nanotechnologies in the biosciences. Analytical and Bioanalytical Chemistry, 2008, 391, 2693-2694.	3.7	0
149	A viscosity-tunable polymer for DNA separation by microchip electrophoresis. Analytical and Bioanalytical Chemistry, 2008, 391, 2543-2549.	3.7	12
150	Quantitative determination of amino acids in functional foods by microchip electrophoresis. Journal of Separation Science, 2008, 31, 898-903.	2.5	20
151	Numerical analysis of thermal lens effect for sensitive detection on microchips. Electrophoresis, 2008, 29, 1895-1901.	2.4	10
152	Microchip analysis of plant glucosinolates. Electrophoresis, 2008, 29, 2280-2287.	2.4	18
153	Accurate quantitation of salivary and pancreatic amylase activities in human plasma by microchip electrophoretic separation of the substrates and hydrolysates coupled with immunoinhibition. Electrophoresis, 2008, 29, 1902-1909.	2.4	21
154	Highly sensitive doubleâ€fluorescent dye staining on microchip electrophoresis for analysis of milk proteins. Electrophoresis, 2008, 29, 2533-2538.	2.4	8
155	Flowing thermal lens micro-flow velocimeter. Sensors and Actuators B: Chemical, 2008, 133, 91-96.	7.8	17
156	Rinse and evaporation coating of poly(methyl methacrylate) microchip for separation of sodium dodecyl sulfate–protein complex. Journal of Chromatography A, 2008, 1192, 289-293.	3.7	6
157	Dynamic Cross-Linking Effect of Mg2+ To Enhance Sieving Properties of Low-Viscosity Poly(vinylpyrrolidone) Solutions for Microchip Electrophoresis of Proteins. Analytical Chemistry, 2008, 80, 312-316.	6.5	13
158	Rolling Circle Amplification and Circle-to-circle Amplification of a Specific Gene Integrated with Electrophoretic Analysis on a Single Chip. Analytical Chemistry, 2008, 80, 2483-2490.	6.5	70
159	Nuclease Tolerant FRET Probe Based on DNA-Quantum Dot Conjugation. Analytical Sciences, 2008, 24, 181-183.	1.6	22
160	Poly(methylmethacrylate) Microchip Electrophoresis of Proteins Using Linear-poly(acrylamide) Solutions as Separation Matrix. Analytical Sciences, 2008, 24, 321-325.	1.6	8
161	Microchip Electrophoresis for Specific Gene Detection of the Pathogenic Bacteria V. cholerae by Circle-to-Circle Amplification. Analytical Sciences, 2008, 24, 327-332.	1.6	18
162	Microchip-Based Immunoassay. Bunseki Kagaku, 2007, 56, 521-534.	0.2	5

#	Article	IF	Citations
163	Quantum Dots for Single Bio-Molecule Imaging. Analytical Sciences, 2007, 23, 21-24.	1.6	37
164	Highly Sensitive Detection of Non-Labeled Peptides Using UV Excitation Thermal Lens Microscope/Liquid Chromatography. Bunseki Kagaku, 2007, 56, 1-7.	0.2	4
165	Microchip Electrophoresis for Detection of Circle-to-Circle Amplification Products towards Sensitive and Rapid DNA Analysis. Chemistry Letters, 2007, 36, 396-397.	1.3	4
166	Online Preconcentration by Transient Isotachophoresis in Linear Polymer on a Poly(methyl) Tj ETQq0 0 0 rgBT /Or Chemistry, 2007, 79, 3667-3672.	verlock 10 6.5	Tf 50 627 To 82
167	Influences of electroosmotic flows in nanopillar chips on DNA separation: Experimental results and numerical simulations. Israel Journal of Chemistry, 2007, 47, 161-169.	2.3	19
168	Enhanced electrophoretic resolution of monosulfate glycosaminoglycan disaccharide isomers on poly(methyl methacrylate) chips. Electrophoresis, 2007, 28, 414-421.	2.4	23
169	Dynamic coating using methylcellulose and polysorbate 20 for nondenaturing electrophoresis of proteins on plastic microchips. Electrophoresis, 2007, 28, 830-836.	2.4	21
170	Rapid bonding of Pyrex glass microchips. Electrophoresis, 2007, 28, 994-1001.	2.4	20
171	Determination of human blood glucose levels using microchip electrophoresis. Electrophoresis, 2007, 28, 2927-2933.	2.4	29
172	Dynamic modification of poly(methyl methacrylate) chips using poly(vinyl alcohol) for glycosaminoglycan disaccharide isomer separation. Electrophoresis, 2007, 28, 3308-3314.	2.4	13
173	Channel wall coating on a polyâ€(methyl methacrylate) CE microchip by thermal immobilization of a cellulose derivative for sizeâ€based protein separation. Electrophoresis, 2007, 28, 4582-4589.	2.4	7
174	Rapid and simultaneous multiple genotyping of human Y chromosome from a human blood sample by on-chip enzymatic digestion and microchannel array electrophoresis coupled with blood sample pretreatment, and microscale PCR. Sensors and Actuators B: Chemical, 2007, 121, 124-128.	7.8	0
175	Singleâ€molecule measurements with a single quantum dot. Chemical Record, 2007, 7, 295-304.	5.8	29
176	Evaluation of amplified cRNA targets for oligonucleotide microarrays. Analytical and Bioanalytical Chemistry, 2007, 387, 2645-2654.	3.7	4
177	UV Excitation Thermal Lens Microscope for Sensitive and Nonlabeled Detection of Nonfluorescent Molecules. Analytical Chemistry, 2006, 78, 2859-2863.	6.5	52
178	Circular Dichroism Thermal Lens Microscope for Sensitive Chiral Analysis on Microchip. Analytical Chemistry, 2006, 78, 2646-2650.	6.5	38
179	Liquid Filling Method for Nanofluidic Channels Utilizing the High Solubility of CO ₂ . Analytical Sciences, 2006, 22, 529-532.	1.6	15
180	Quantitative Detection and Fixation of Single and Multiple Gold Nanoparticles on a Microfluidic Chip by Thermal Lens Microscope. Analytical Sciences, 2006, 22, 781-784.	1.6	15

#	Article	lF	Citations
181	Rapid Multiplexing and Simultaneous Detection of Human Spermatogenetic Failure with a 12 Lane Microchip Electrophoresis System. Biological and Pharmaceutical Bulletin, 2006, 29, 1487-1489.	1.4	4
182	Low Viscous Separation Media for Genomics and Proteomics Analysis on Microchip Electrophoresis System. Biological and Pharmaceutical Bulletin, 2006, 29, 595-604.	1.4	4
183	Nanotechnology for genomics & proteomics. Nano Today, 2006, 1, 38-45.	11.9	19
184	Monitoring of intercellular messengers released from neuron networks cultured in a microchip. Journal of Chromatography A, 2006, 1111, 228-232.	3.7	27
185	Rapid analysis of oligosaccharides derived from glycoproteins by microchip electrophoresis. Journal of Chromatography A, 2006, 1109, 138-143.	3.7	22
186	Electrophoretic behavior of plasmid DNA in the presence of various intercalating dyes. Journal of Chromatography A, 2006, 1118, 218-225.	3.7	8
187	Microchip-based liquid–liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine. Journal of Chromatography A, 2006, 1129, 105-110.	3.7	52
188	Pressure-driven flow control system for nanofluidic chemical process. Journal of Chromatography A, 2006, 1137, 256-262.	3.7	69
189	Miniaturized thermal lens and fluorescence detection system for microchemical chips. Journal of Chromatography A, 2006, 1106, 89-93.	3.7	22
190	Study of water properties in nanospace. Analytical and Bioanalytical Chemistry, 2006, 386, 759-764.	3.7	49
191	Total reflection X-ray fluorescence analysis with chemical microchip. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 389-392.	2.9	7
192	Development of the microchip-based repeatable immunoassay system for clinical diagnosis. Measurement Science and Technology, 2006, 17, 3189-3194.	2.6	29
193	熱レンã,ºé;•徺ºéţã,'用ã¸ã¥ãƒžã,ã¸ãƒæμè·¯å†…ã®æμã,Œå^†æž• Shinku/Journal of the Vacuum Society of Jap	oa m, 2 006,	40, 400-40
194	Optimization of an Interface Chip for Coupling Capillary Electrophoresis with Thermal Lens Microscopic Detection. Analytical Sciences, 2005, 21, 49-52.	1.6	39
195	System for high-level radioactive waste using microchannel chip — extraction behavior of metal ions from aqueous phase to organic phase in microchannel. Progress in Nuclear Energy, 2005, 47, 439-447.	2.9	78
196	Rapid proton diffusion in microfluidic devices by means of micro-LIF technique. Experiments in Fluids, 2005, 38, 117-122.	2.4	35
197	Continuous flow chemical processing on a microchip using microunit operations and a multiphase flow network. Progress in Nuclear Energy, 2005, 47, 434-438.	2.9	14
198	Effect of korteweg stress in miscible liquid two-layer flow in a microfluidic device. Journal of Visualization, 2005, 8, 117-124.	1.8	19

#	Article	IF	CITATIONS
199	Continuous-Flow Chemical Processing in Three-Dimensional Microchannel Network for On-Chip Integration of Multiple Reactions in a Combinatorial Mode. QSAR and Combinatorial Science, 2005, 24, 742-757.	1.4	16
200	é \dagger ç \odot ê \times -ã, \lnot ã f \odot ã, \if 1ã f ã f f ã f $-$. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2005, 56, 132	2-1 3.7 .	0
201	Tunable thermal lens spectrometry utilizing microchannel-assisted thermal lens spectrometry. Lab on A Chip, 2005, 5, 129.	6.0	29
202	Thermal Lens Micro Optical Systems. Analytical Chemistry, 2005, 77, 626-630.	6.5	48
203	Surface Modification Method of Microchannels for Gasâ^'Liquid Two-Phase Flow in Microchips. Analytical Chemistry, 2005, 77, 943-947.	6.5	144
204	Development of a Microchip-Based Bioassay System Using Cultured Cells. Analytical Chemistry, 2005, 77, 2125-2131.	6.5	99
205	Measurement of pH field of chemically reacting flow in microfluidic devices by laser-induced fluorescence. Measurement Science and Technology, 2004, 15, 955-960.	2.6	40
206	Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel networkElectronic supplementary information (ESI) available: illustration and microscopic view of two-phase laminar flow. See http://www.rsc.org/suppdata/lc/b4/b400233d/. Lab on A Chip, 2004, 4, 328.	6.0	50
207	Peer Reviewed: Thermal Lens Microscopy and Microchip Chemistry. Analytical Chemistry, 2004, 76, 52 A-60 A.	6.5	191
208	Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection. Lab on A Chip, 2004, 4, 570.	6.0	110
209	High-speed micro-PIV measurements of transient flow in microfluidic devices. Measurement Science and Technology, 2004, 15, 1965-1970.	2.6	99
210	Microchip-based chemical and biochemical analysis systems. Advanced Drug Delivery Reviews, 2003, 55, 379-391.	13.7	156
211	Chemical processing on microchips for analysis, synthesis, and bioassay. Electrophoresis, 2003, 24, 3583-3594.	2.4	51
212	An interface chip connection between capillary electrophoresis and thermal lens microscope. Electrophoresis, 2003, 24, 179-184.	2.4	36
213	Microchannel-assisted thermal-lens spectrometry for microchip analysis. Journal of Chromatography A, 2003, 987, 197-204.	3.7	44
214	Optimisation of thermal lens microscopic measurements in a microchip. Analytica Chimica Acta, 2003, 480, 79-95.	5.4	41
215	Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip. Analytical Chemistry, 2003, 75, 350-354.	6.5	142
216	Spectroscopic Analysis of Liquid/Liquid Interfaces in Multiphase Microflows. Journal of the American Chemical Society, 2003, 125, 14954-14955.	13.7	51

#	Article	IF	Citations
217	Micro integrated chemical systems for general use. , 2003, , 285-307.		2
218	Development of a desktop-sized thermal lens microscope. Bunseki Kagaku, 2003, 52, 569-574.	0.2	15
219	Integration of Chemical and Biochemical Analysis Systems into a Glass Microchip Analytical Sciences, 2003, 19, 15-22.	1.6	77
220	Fundamental Study on the Segmented Flow Injection - Multiphase Flow Formation Towards Microchip-Based Multi-Ion Sensing. IEEJ Transactions on Sensors and Micromachines, 2003, 123, 124-127.	0.1	1
221	Integrated chemical systems on microchips for analysis and assay. Potential future, mobile high-performance detection system for chemical weapons. Pure and Applied Chemistry, 2002, 74, 2299-2309.	1.9	15
222	Stabilization of Liquid Interface and Control of Two-Phase Confluence and Separation in Glass Microchips by Utilizing Octadecylsilane Modification of Microchannels. Analytical Chemistry, 2002, 74, 1724-1728.	6.5	140
223	Nanochannels on a Fused-Silica Microchip and Liquid Properties Investigation by Time-Resolved Fluorescence Measurements. Analytical Chemistry, 2002, 74, 6170-6176.	6.5	208
224	Continuous-Flow Chemical Processing on a Microchip by Combining Microunit Operations and a Multiphase Flow Network. Analytical Chemistry, 2002, 74, 1565-1571.	6.5	330
225	Single-Cell Analysis by a Scanning Thermal Lens Microscope with a Microchip:Â Direct Monitoring of CytochromecDistribution during Apoptosis Process. Analytical Chemistry, 2002, 74, 1560-1564.	6.5	165
226	Pile-up glass microreactor. Lab on A Chip, 2002, 2, 193.	6.0	93
227	Glass microchip with three-dimensional microchannel network for 2 \tilde{A} — 2 parallel synthesis. Lab on A Chip, 2002, 2, 188-192.	6.0	118
228	Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon- \hat{l}^3 . Electrophoresis, 2002, 23, 734-739.	2.4	195
229	Nanochannel on Fused-Silica Microchip and Liquid Properties Investigation by Time-Resolved Fluorescence Measurements., 2002,, 769-771.		3
230	Microchip-Based Enzyme-Linked Immunosorbent Assay (ELISA) System. , 2002, , 190-192.		1
231	Chemico-Functional Membrane for Integrated Chemical Processes on a Microchip., 2002, , 931-933.		1
232	On-Chip Concentration of Liquid Samples Using an Air-Liquid Two-Phase Flow., 2002,, 356-358.		2
233	Fast and high conversion phase-transfer synthesis exploiting the liquid–liquid interface formed in a microchannel chip. Chemical Communications, 2001, , 2662-2663.	4.1	153
234	Integration of a wet analysis system on a glass chip: determination of Co(ii) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy. Lab on A Chip, 2001, 1, 72.	6.0	82

#	Article	IF	CITATIONS
235	On-Chip Integration of Sequential Ion-Sensing System Based on Intermittent Reagent Pumping and Formation of Two-Layer Flow. Analytical Chemistry, 2001, 73, 5551-5556.	6.5	103
236	Photothermal Temperature Control of a Chemical Reaction on a Microchip Using an Infrared Diode Laser. Analytical Chemistry, 2001, 73, 4037-4044.	6.5	114
237	Morphological Dependence of Radiative and Nonradiative Relaxation Energy Balance in Photoexcited Aryl Ether Dendrimers as Observed by Fluorescent and Thermal Lens Spectroscopies. Journal of Physical Chemistry B, 2001, 105, 4441-4445.	2.6	25
238	On-Chip Integration of Neutral Ionophore-Based Ion Pair Extraction Reaction. Analytical Chemistry, 2001, 73, 1382-1386.	6.5	115
239	Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope:  Subsingle-Molecule Determination. Analytical Chemistry, 2001, 73, 2112-2116.	6.5	209
240	Determination of Carcinoembryonic Antigen in Human Sera by Integrated Bead-Bed Immunoasay in a Microchip for Cancer Diagnosis. Analytical Chemistry, 2001, 73, 1213-1218.	6.5	353
241	Acceleration of an Enzymatic Reaction in a Microchip Analytical Sciences, 2001, 17, 809-810.	1.6	47
242	Integrated Multilayer Flow System on a Microchip Analytical Sciences, 2001, 17, 89-93.	1.6	175
243	Liquid-Liquid Two-Phase Crossing Flows in Glass Microchips by Utilizing Octadecylsilane Modification of Microchannels. , 2001, , 549-550.		1
244	On-Chip Integration of Multi Ion Sensing System Based on Microfluidic Control., 2001,, 667-669.		0
245	Integrated Immunoassay System Using Multichannel Microchip for Simultaneous Determination. , 2001, , 511-512.		1
246	è�å•åŒ-å¦ãƒ—ãfã,»ã,¹ã®ãfžã,ã,¯ãfãfãf—é>†ç©åŒ Electrochemistry, 2001, 69, 620-623.	1.4	0
247	Infrared Absorption Characteristics of Large-Sized Spherical Aryl-Ether Dendrimers Analytical Sciences, 2000, 16, 1323-1326.	1.6	4
248	Molecular Transport between Two Phases in a Microchannel Analytical Sciences, 2000, 16, 455-456.	1.6	74
249	<title>Subsingle-molecule determination of nonfluorescent species by scanning thermal lens microscope and its application to single-cell measurement</title> ., 2000, , .		1
250	Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser. Journal of Chromatography A, 2000, 894, 45-51.	3.7	96
251	Integration of a microextraction system. Journal of Chromatography A, 2000, 894, 19-23.	3.7	105
252	Integration of a Microextraction System on a Glass Chip:Â Ion-Pair Solvent Extraction of Fe(II) with 4,7-Diphenyl-1,10-phenanthrolinedisulfonic Acid and Tri-n-octylmethylammonium Chloride. Analytical Chemistry, 2000, 72, 1711-1714.	6.5	262

#	Article	IF	Citations
253	Integration of an Immunosorbent Assay System:Â Analysis of Secretory Human Immunoglobulin A on Polystyrene Beads in a Microchip. Analytical Chemistry, 2000, 72, 1144-1147.	6.5	398
254	é>†ç©åŒ−ã•-ãŸãƒŸã,¯ãƒåŒ−å¦å®Ÿé"å® ÿ€• 生体å^†åã®æ æ 出ã•é>»æ°−åŒ−å¦ã¸ã®æœŸå¾…―. Electroch	nem is try, 2	2006), 68, 192
255	Long-term energy storage of dendrimers. Journal of Luminescence, 1999, 83-84, 313-315.	3.1	15
256	Single- and countable-molecule detection of non-fluorescent molecules in liquid phase. Journal of Luminescence, 1999, 83-84, 261-264.	3.1	36
257	Sub-Zeptomole Detection in a Microfabricated Glass Channel by Thermal-Lens Microscopy Analytical Sciences, 1999, 15, 525-529.	1.6	45
258	Integration of Flow Injection Analysis and Zeptomole-Level Detection of the Fe(II)- <i>>0</i> >-Phenanthroline Complex. Analytical Sciences, 1999, 15, 641-645.	1.6	81
259	Photoionization Threshold of Perylene on Water Surface as Measured by Synchrotron Radiation. Chemistry Letters, 1998, 27, 609-610.	1.3	5
260	Rotational distributions and threshold energies of the CH(B-X) emission by controlled electron impact on methane, ethylene, and ethane. Chemical Physics, 1997, 221, 303-309.	1.9	9
261	Dissociation of aliphatic hydrocarbons by controlled electron impact: Vibrational and rotational energy distributions of the excited CH radicals. Chemical Physics, 1996, 203, 257-266.	1.9	10
262	Dissociative excitation of aliphatic hydrocarbons (C2H2n: $n = 1, 2, 3$) by fast argon ion impact: Rovibrational distribution of CH(A2Δ). Chemical Physics, 1996, 206, 237-243.	1.9	4
263	Direct collisional scattering of the excited hydrogen atom: Doppler profile analysis in fast Ar+ ion collisions with acetylene and wthylene. Chemical Physics Letters, 1996, 263, 783-788.	2.6	O
264	Rovibrational Distributions of CH(B 2.SIGMA) Produced in Electron-C2H2 Collisions. The Journal of Physical Chemistry, 1995, 99, 13772-13777.	2.9	11
265	Rovibrational Distributions of CH(A2Î") Produced in e-C2H2Collisions. Chemistry Letters, 1993, 22, 995-996.	1.3	2
266	Determination of Deoxynivalenol in Wheat, Barley, Corn Meal, and Wheat-Based Products by Simultaneous Multisample Fluorescence Polarization Immunoassay Using a Portable Analyzer. ACS Food Science & Technology, 0, , .	2.7	4