
Lauren T May

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4508037/publications.pdf Version: 2024-02-01

Ι ΛΠΦΕΝ Τ ΜΑΥ

#	Article	IF	CITATIONS
1	Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. British Journal of Pharmacology, 2022, 179, 4617-4639.	5.4	18
2	Pharmacological Insights Into Safety and Efficacy Determinants for the Development of Adenosine Receptor Biased Agonists in the Treatment of Heart Failure. Frontiers in Pharmacology, 2021, 12, 628060.	3.5	5
3	Development and Application of Subtype-Selective Fluorescent Antagonists for the Study of the Human Adenosine A ₁ Receptor in Living Cells. Journal of Medicinal Chemistry, 2021, 64, 6670-6695.	6.4	6
4	Inhibition of the Proliferation of Human Lung Fibroblasts by Prostacyclin Receptor Agonists is Linked to a Sustained cAMP Signal in the Nucleus. Frontiers in Pharmacology, 2021, 12, 669227.	3.5	16
5	Biased agonism at adenosine receptors. Cellular Signalling, 2021, 82, 109954.	3.6	22
6	Development of Covalent, Clickable Probes for Adenosine A ₁ and A ₃ Receptors. Journal of Medicinal Chemistry, 2021, 64, 8161-8178.	6.4	7
7	Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature, 2021, 597, 571-576.	27.8	84
8	The adenosine A2B G protein-coupled receptor: Recent advances and therapeutic implications. , 2019, 198, 20-33.		34
9	Substituted Pyridazin-3(2 <i>H</i>)-ones as Highly Potent and Biased Formyl Peptide Receptor Agonists. Journal of Medicinal Chemistry, 2019, 62, 5242-5248.	6.4	19
10	Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology. Neuropharmacology, 2019, 149, 83-96.	4.1	17
11	"Selective―Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu ₅ Allosteric Ligands. Molecular Pharmacology, 2018, 93, 504-514.	2.3	18
12	New paradigms in adenosine receptor pharmacology: allostery, oligomerization and biased agonism. British Journal of Pharmacology, 2018, 175, 4036-4046.	5.4	49
13	A Structure–Activity Relationship Study of Bitopic <i>N</i> ⁶ -Substituted Adenosine Derivatives as Biased Adenosine A ₁ Receptor Agonists. Journal of Medicinal Chemistry, 2018, 61, 2087-2103.	6.4	29
14	Correspondence: Reply to â€~Compound 17b and formyl peptide receptor biased agonism in relation to cardioprotective effects in ischaemia-reperfusion injury'. Nature Communications, 2018, 9, 530.	12.8	6
15	Structure-based discovery of selective positive allosteric modulators of antagonists for the M ₂ muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2419-E2428.	7.1	57
16	α 1A -Adrenoceptors activate mTOR signalling and glucose uptake in cardiomyocytes. Biochemical Pharmacology, 2018, 148, 27-40.	4.4	20
17	Structural Basis for Binding of Allosteric Drug Leads in the Adenosine A1 Receptor. Scientific Reports, 2018, 8, 16836.	3.3	63
18	Biased agonism and allosteric modulation of metabotropic glutamate receptor 5. Clinical Science, 2018, 132, 2323-2338.	4.3	14

LAUREN T MAY

#	Article	IF	CITATIONS
19	Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G Protein Complexes for Structure Determination. ACS Pharmacology and Translational Science, 2018, 1, 12-20.	4.9	96
20	Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature, 2018, 558, 559-563.	27.8	274
21	Coincident activation of adenosine A1 receptors and metabotropic glutamate receptor 5 differentially influences signalling in primary brain cell cultures. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-117.	0.0	0
22	Coâ€activation of adenosine and glutamate receptors modulates signaling in primary brain cell cultures. FASEB Journal, 2018, 32, 555.18.	0.5	0
23	Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell, 2017, 168, 867-877.e13.	28.9	237
24	Capadenoson, a clinically trialed partial adenosine A 1 receptor agonist, can stimulate adenosine A 2B receptor biased agonism. Biochemical Pharmacology, 2017, 135, 79-89.	4.4	37
25	Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nature Communications, 2017, 8, 14232.	12.8	104
26	A kinetic view of GPCR allostery and biased agonism. Nature Chemical Biology, 2017, 13, 929-937.	8.0	126
27	Targeting Adenosine Receptors for the Treatment of Cardiac Fibrosis. Frontiers in Pharmacology, 2017, 8, 243.	3.5	42
28	New Pharmacological Approaches to the Prevention of Myocardial Ischemia- Reperfusion Injury. Current Drug Targets, 2017, 18, 1689-1711.	2.1	22
29	Extracellular Loop 2 of the Adenosine A1 Receptor Has a Key Role in Orthosteric Ligand Affinity and Agonist Efficacy. Molecular Pharmacology, 2016, 90, 703-714.	2.3	53
30	Role of the Second Extracellular Loop of the Adenosine A ₁ Receptor on Allosteric Modulator Binding, Signaling, and Cooperativity. Molecular Pharmacology, 2016, 90, 715-725.	2.3	56
31	Novel Irreversible Agonists Acting at the A ₁ Adenosine Receptor. Journal of Medicinal Chemistry, 2016, 59, 11182-11194.	6.4	20
32	<scp>VCP</scp> 746, a novel A ₁ adenosine receptor biased agonist, reduces hypertrophy in a rat neonatal cardiac myocyte model. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 976-982.	1.9	20
33	The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochemical Pharmacology, 2016, 117, 46-56.	4.4	30
34	Structure-Activity Analysis of Biased Agonism at the Human Adenosine A ₃ Receptor. Molecular Pharmacology, 2016, 90, 12-22.	2.3	37
35	Ligand-Independent Adenosine A2B Receptor Constitutive Activity as a Promoter of Prostate Cancer Cell Proliferation. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 36-44.	2.5	50
36	Quantification of adenosine A 1 receptor biased agonism: Implications for drug discovery. Biochemical Pharmacology, 2016, 99, 101-112.	4.4	58

LAUREN T MAY

#	Article	IF	CITATIONS
37	A Positive Allosteric Modulator of the Adenosine A ₁ Receptor Selectively Inhibits Primary Afferent Synaptic Transmission in a Neuropathic Pain Model. Molecular Pharmacology, 2015, 88, 460-468.	2.3	53
38	Synthesis and Pharmacological Evaluation of Dual Acting Ligands Targeting the Adenosine A _{2A} and Dopamine D ₂ Receptors for the Potential Treatment of Parkinson's Disease. Journal of Medicinal Chemistry, 2015, 58, 718-738.	6.4	44
39	Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. , 2015, 148, 47-65.		59
40	Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4614-4619.	7.1	92
41	Design, synthesis and evaluation of N6-substituted 2-aminoadenosine-5′-N-methylcarboxamides as A3 adenosine receptor agonists. MedChemComm, 2014, 5, 192-196.	3.4	6
42	Allosteric Modulation of Endogenous Metabolites as an Avenue for Drug Discovery. Molecular Pharmacology, 2012, 82, 281-290.	2.3	69
43	Allosteric interactions across native adenosineâ€A ₃ receptor homodimers: quantification using singleâ€cell ligandâ€binding kinetics. FASEB Journal, 2011, 25, 3465-3476.	0.5	82
44	The Effect of Allosteric Modulators on the Kinetics of Agonist-G Protein-Coupled Receptor Interactions in Single Living Cells. Molecular Pharmacology, 2010, 78, 511-523.	2.3	157
45	Allosteric Modulation of G Protein–Coupled Receptors. Annual Review of Pharmacology and Toxicology, 2007, 47, 1-51.	9.4	615
46	Structure-Function Studies of Allosteric Agonism at M2Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2007, 72, 463-476.	2.3	105
47	Effects of urea pretreatment on the binding properties of adenosine A1 receptors. British Journal of Pharmacology, 2005, 146, 1119-1129.	5.4	11
48	Regulation of M ₂ Muscarinic Acetylcholine Receptor Expression and Signaling by Prolonged Exposure to Allosteric Modulators. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 382-390.	2.5	31
49	Allosteric modulators of G-protein-coupled receptors. Current Opinion in Pharmacology, 2003, 3, 551-556.	3.5	72
50	Examining the Role of the Linker in Bitopic <i>N</i> ⁶ -Substituted Adenosine Derivatives Acting as Biased Adenosine A ₁ Receptor Agonists. Journal of Medicinal Chemistry, 0, , .	6.4	1