Yunzhi Gao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4507890/yunzhi-gao-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68
papers

2,344
citations

h-index

69
ext. papers

2,911
ext. citations

10.1
avg, IF

L-index

#	Paper	IF	Citations
68	Regulating Li deposition by constructing homogeneous LiF protective layer for high-performance Li metal anode. <i>Chemical Engineering Journal</i> , 2022 , 427, 131625	14.7	6
67	Poly (vinyl ethylene carbonate)-based dual-salt gel polymer electrolyte enabling high voltage lithium metal batteries. <i>Chemical Engineering Journal</i> , 2022 , 437, 135419	14.7	1
66	Achieving high-energy-density magnesium/sulfur battery via a passivation-free Mg-Li alloy anode. <i>Energy Storage Materials</i> , 2022 , 50, 380-386	19.4	O
65	Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. <i>Chemical Engineering Journal</i> , 2021 , 433, 133570	14.7	1
64	Interface Reinforcement of a Prussian Blue Cathode Using a Non-Flammable Co-Solvent Cresyl Diphenyl Phosphate for a High-Safety Na-Ion Battery. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 5809-5817	8.3	3
63	Formation of an Artificial Mg-Permeable Interphase on Mg Anodes Compatible with Ether and Carbonate Electrolytes. <i>ACS Applied Materials & Electrolytes (Materials & Materials & Materials</i>	9.5	7
62	Stabilizing Lithium Metal Anode Enabled by a Natural Polymer Layer for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2021 , 13, 28252-28260	9.5	6
61	In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. <i>Journal of Power Sources</i> , 2021 , 496, 229861	8.9	11
60	Deactivated Pt Electrocatalysts for the Oxygen Reduction Reaction: The Regeneration Mechanism and a Regenerative Protocol. <i>ACS Catalysis</i> , 2021 , 11, 9293-9299	13.1	2
59	Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond. <i>Advanced Materials</i> , 2021 , 33, e2000721	24	84
58	An armor-like artificial solid electrolyte interphase layer for high performance lithium-sulfur batteries. <i>Applied Materials Today</i> , 2021 , 24, 101108	6.6	2
57	Monovacancy Coupled Pyridinic N Site Enables Surging Oxygen Reduction Activity of Metal-Free CNx Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 1264-1271	8.3	2
56	Interrelated interfacial issues between a Li7La3Zr2O12-based garnet electrolyte and Li anode in the solid-state lithium battery: a review. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5952-5979	13	15
55	Polyvinylpyrrolidone-Coordinated Single-Site Platinum Catalyst Exhibits High Activity for Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15902-15907	16.4	38
54	Polyvinylpyrrolidone-Coordinated Single-Site Platinum Catalyst Exhibits High Activity for Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 16036-16041	3.6	7
53	Constructing an inorganic/organic mixed protective film for low-cost fabrication of stable lithium metal anode. <i>Journal of Alloys and Compounds</i> , 2020 , 818, 152862	5.7	6
52	A novel MoS2@C framework architecture composites with three-dimensional cross-linked porous carbon supporting MoS2 nanosheets for sodium storage. <i>Journal of Alloys and Compounds</i> , 2020 , 818, 152821	5.7	22

(2019-2020)

51	A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2066-2073	13	35
50	Unraveling the Relationship between Ti4+ Doping and Li+ Mobility Enhancement in Ti4+ Doped Li3V2(PO4)3. ACS Applied Energy Materials, 2020 , 3, 715-722	6.1	6
49	Capacity degradation mechanism and improvement actions for 4 V-class all-solid-state lithium-metal polymer batteries. <i>Chemical Engineering Journal</i> , 2020 , 392, 123665	14.7	22
48	Sulfur Dioxide-Tolerant Bimetallic PtRu Catalyst toward Oxygen Electroreduction. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1295-1301	8.3	10
47	The stable cycling of a high-capacity Bi anode enabled by an in situ-generated LiPO transition layer in a sulfide-based all-solid-state battery. <i>Chemical Communications</i> , 2020 , 56, 15458-15461	5.8	4
46	Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. <i>Nano Energy</i> , 2020 , 78, 105366	17.1	53
45	Black phosphorus-modified sulfurized polyacrylonitrile with high C-rate and cycling performance in ether-based electrolyte for lithium sulfur batteries. <i>Chemical Communications</i> , 2020 , 56, 12797-12800	5.8	11
44	Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. <i>Chemical Engineering Journal</i> , 2020 , 382, 123046	14.7	5
43	High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. <i>Nano Energy</i> , 2019 , 66, 104088	17.1	88
42	Direct dimethyl ether fuel cells with low platinum-group-metal loading at anode: Investigations of operating temperatures and anode Pt/Ru ratios. <i>Journal of Power Sources</i> , 2019 , 433, 126690	8.9	9
41	Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage. <i>Chemical Engineering Journal</i> , 2019 , 375, 121923	14.7	21
40	Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. <i>Nano Energy</i> , 2019 , 61, 201-210	17.1	63
39	Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries. <i>Electrochimica Acta</i> , 2019 , 306, 590-598	6.7	31
38	Synthesis of Well-Defined Pt-Based Catalysts for Methanol Oxidation Reaction Based on ElectronHole Separation Effects. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8597-8603	8.3	6
37	Scalable submicron/micron silicon particles stabilized in a robust graphite-carbon architecture for enhanced lithium storage. <i>Journal of Colloid and Interface Science</i> , 2019 , 555, 783-790	9.3	13
36	Unraveling the Origins of the Inreactive Corelin Conversion Electrodes to Trigger High Sodium-Ion Electrochemistry. <i>ACS Energy Letters</i> , 2019 , 4, 2007-2012	20.1	25
35	Engineering of Nitrogen Coordinated Single Cobalt Atom Moieties for Oxygen Electroreduction. <i>ACS Applied Materials & District Material</i>	9.5	32
34	Layer-by-Layer Engineered Silicon-Based Sandwich Nanomat as Flexible Anode for Lithium-Ion Batteries. <i>ACS Applied Materials & Description</i> 11, 39970-39978	9.5	17

33	A quasi-solid-state Liß battery with high energy density, superior stability and safety. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6533-6542	13	24
32	Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction. <i>Ceramics International</i> , 2019 , 45, 2411-2417	5.1	38
31	A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 190-197	5.7	40
30	ZIF-8 with Ferrocene Encapsulated: A Promising Precursor to Single-Atom Fe Embedded Nitrogen-Doped Carbon as Highly Efficient Catalyst for Oxygen Electroreduction. <i>Small</i> , 2018 , 14, e170)4 2 82	148
29	Enhanced electrochemical performance of Li4Ti5O12 through in-situ coating 70Li2S-30P2S5 solid electrolyte for all-solid-state lithium batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 752, 8-13	5.7	17
28	Unravelling the Enhanced High-Temperature Performance of Lithium-Rich Oxide Cathode with Methyl Diphenylphosphinite as Electrolyte Additive. <i>ChemElectroChem</i> , 2018 , 5, 1569-1575	4.3	26
27	Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. <i>Journal of Power Sources</i> , 2018 , 381, 156-163	8.9	60
26	A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. <i>Chemical Engineering Journal</i> , 2018 , 341, 37-46	14.7	66
25	Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. <i>Energy Storage Materials</i> , 2018 , 11, 197-204	19.4	82
24	Iron sulfide/carbon hybrid cluster as an anode for potassium-ion storage. <i>Journal of Alloys and Compounds</i> , 2018 , 766, 1086-1091	5.7	39
23	Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. <i>ACS Applied Materials & Company Interfaces</i> , 2018 , 10, 29638-29646	9.5	48
22	Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. <i>Nano Energy</i> , 2017 , 34, 15-25	17.1	264
21	Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. <i>Journal of Power Sources</i> , 2017 , 347, 170-177	8.9	91
20	Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10936-10945	13	65
19	Improved high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode with Tris(2,2,2-trifluoroethyl) phosphite as electrolyte additive. <i>Electrochimica Acta</i> , 2017 , 243, 72-81	6.7	22
18	Two isomorphous coordination polymer-derived metal oxides as high-performance anodes for lithium-ion batteries. <i>New Journal of Chemistry</i> , 2017 , 41, 6187-6194	3.6	9
17	1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode. <i>Journal of Power Sources</i> , 2017 , 361, 227-236	8.9	47
16	Clew-like N-doped multiwalled carbon nanotube aggregates derived from metal-organic complexes for lithium-sulfur batteries. <i>Carbon</i> , 2017 , 122, 635-642	10.4	33

LIST OF PUBLICATIONS

15	High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+intercalation pseudocapacitance. <i>Journal of Power Sources</i> , 2017 , 361, 80-86	8.9	106
14	Triphenyl phosphite as an electrolyte additive to improve the cyclic stability of lithium-rich layered oxide cathode for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 216, 44-50	6.7	27
13	A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: From nanoparticles to support materials. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 1025-1036	11.3	10
12	Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. <i>Chemistry of Materials</i> , 2016 , 28, 5274-5281	9.6	38
11	Synthesis of Nitrogen-doped Niobium Dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum. <i>Electrochimica Acta</i> , 2016 , 195, 166-174	6.7	11
10	Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries. <i>Chemical Communications</i> , 2015 , 51, 17293-6	5.8	96
9	Improved electrochemical performance and capacity fading mechanism of nano-sized LiMn0.9Fe0.1PO4 cathode modified by polyacene coating. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1	569 ³ 157	7 9 55
8	Lithium deposition on graphite anode during long-term cycles and the effect on capacity loss. <i>RSC Advances</i> , 2014 , 4, 26335-26341	3.7	29
7	Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size. <i>ACS Applied Materials & Distributed Materials </i>	9.5	43
6	An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15640	13	65
5	Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling. ACS Applied Materials & amp; Interfaces, 2014, 6, 12962-70	9.5	26
4	Changing of SEI Film and Electrochemical Properties about MCMB Electrodes during Long-Term Charge/Discharge Cycles. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A2093-A2099	3.9	36
3	Comparative Investigation of Dimethyl Ether Gas and Solution as Fuel under Direct Fuel Cells. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, B205		6
2	Investigation of a novel MEA for direct dimethyl ether fuel cell. <i>Electrochemistry Communications</i> , 2008 , 10, 238-241	5.1	12
1	Deactivation and regeneration of a benchmark Pt/C catalyst toward oxygen reduction reaction in the presence of poisonous SO2 and NO. <i>Catalysis Science and Technology</i> ,	5.5	1