Paulo Durao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4507639/publications.pdf

Version: 2024-02-01

22 papers 1,193 citations

15 h-index 713466 21 g-index

25 all docs

25 docs citations

25 times ranked

1697 citing authors

#	Article	IF	CITATIONS
1	Competition dynamics in longâ€term propagations of Schizosaccharomyces pombe strain communities. Ecology and Evolution, 2021, 11, 15085-15097.	1.9	3
2	Radial Expansion Facilitates the Maintenance of Double Antibiotic Resistances. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	3
3	Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biology, 2020, 18, e3000617.	5. 6	59
4	Dysbiosis individualizes the fitness effect of antibiotic resistance in the mammalian gut. Nature Ecology and Evolution, 2020, 4, 1268-1278.	7.8	18
5	Portuguese in vitro antibiotic susceptibilities favor current nontuberculous mycobacteria treatment guidelines. Pulmonology, 2019, 25, 162-167.	2.1	5
6	Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends in Microbiology, 2018, 26, 677-691.	7.7	187
7	Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biology, 2017, 15, e2001741.	5 . 6	56
8	Enhanced Survival of Rifampin- and Streptomycin-Resistant Escherichia coli Inside Macrophages. Antimicrobial Agents and Chemotherapy, 2016, 60, 4324-4332.	3.2	15
9	Principles for Predicting RNA Secondary Structure Design Difficulty. Journal of Molecular Biology, 2016, 428, 748-757.	4.2	67
10	Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance. Molecular Biology and Evolution, 2015, 32, 2675-2680.	8.9	41
11	Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nature Chemical Biology, 2015, 11, 148-155.	8.0	86
12	Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cellular and Molecular Life Sciences, 2015, 72, 911-922.	5.4	87
13	Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuniCGUG11284: characterization of a metallo-oxidase. Metallomics, 2012, 4, 37-47.	2.4	36
14	The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Dalton Transactions, 2010, 39, 2875.	3.3	49
15	Proton transfer mechanisms in multi-copper oxidases: studies in CotA-laccase. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s170-s171.	0.3	1
16	Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. Journal of Biological Inorganic Chemistry, 2008, 13, 183-193.	2.6	173
17	Copper incorporation into recombinant CotA-laccase from Bacillus subtilis: Characterization of fully copper loaded enzymes. Journal of Biotechnology, 2008, 136, S320.	3.8	O
18	Proximal mutations at the typeÂ1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Biochemical Journal, 2008, 412, 339-346.	3.7	66

#	Article	IF	CITATION
19	Insight into stability of CotA laccase from the spore coat of <i>Bacillus subtilis</i> Biochemical Society Transactions, 2007, 35, 1579-1582.	3.4	25
20	Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Journal of Biological Inorganic Chemistry, 2006, 11, 514-526.	2.6	154
21	A metal ion-based method for the screening of nitrilases. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 156-159.	1.8	20
22	Activation and significance of vacuolar H+-ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Biochemical and Biophysical Research Communications, 2003, 312, 1317-1324.	2.1	39