Peter N Cockerill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4507415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Experimental Hematology, 2022, 111, 1-12.	0.4	7
2	Epigenetic regulator genes direct lineage switching inÂ <i>MLL/AF4</i> leukemia. Blood, 2022, 140, 1875-1890.	1.4	26
3	Isoform-specific and signaling-dependent propagation of acute myeloid leukemia by Wilms tumor 1. Cell Reports, 2021, 35, 109010.	6.4	12
4	Stable Epigenetic Programming of Effector and Central Memory CD4 T Cells Occurs Within 7 Days of Antigen Exposure In Vivo. Frontiers in Immunology, 2021, 12, 642807.	4.8	4
5	Unravelling the apoptotic machinery in CMML. Blood, 2021, 137, 3321-3322.	1.4	0
6	RUNX1/ETO and mutant KIT both contribute to programming the transcriptional and chromatin landscape in t(8;21) acute myeloid leukemia. Experimental Hematology, 2020, 92, 62-74.	0.4	2
7	Chromatin Priming Renders T Cell Tolerance-Associated Genes Sensitive to Activation below theÂSignaling Threshold for Immune Response Genes. Cell Reports, 2020, 31, 107748.	6.4	21
8	ILâ€2/ILâ€7â€inducible factors pioneer the path to T cell differentiation in advance of lineageâ€defining factors. EMBO Journal, 2020, 39, e105220.	7.8	26
9	Rewiring of the Transcription Factor Network in Acute Myeloid Leukemia. Cancer Informatics, 2019, 18, 117693511985986.	1.9	7
10	RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBPα- and AP-1-Mediated Alterations in Enhancer-Promoter Interaction. Cell Reports, 2019, 28, 3022-3031.e7.	6.4	25
11	Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nature Genetics, 2019, 51, 151-162.	21.4	140
12	Global long terminal repeat activation participates in establishing the unique gene expression programme of classical Hodgkin lymphoma. Leukemia, 2019, 33, 1463-1474.	7.2	19
13	The Oncogenic Transcription Factor RUNX1/ETO Corrupts Cell Cycle Regulation to Drive Leukemic Transformation. Cancer Cell, 2018, 34, 626-642.e8.	16.8	81
14	Prospective Isolation and Characterization of Genetically and Functionally Distinct AML Subclones. Cancer Cell, 2018, 34, 674-689.e8.	16.8	71
15	C/EBPα overrides epigenetic reprogramming by oncogenic transcription factors in acute myeloid leukemia. Blood Advances, 2018, 2, 271-284.	5.2	14
16	Chromatin priming of genes in development: Concepts, mechanisms and consequences. Experimental Hematology, 2017, 49, 1-8.	0.4	41
17	RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML. Cell Reports, 2017, 19, 1654-1668.	6.4	46
18	Chromatin priming elements establish immunological memory in T cells without activating transcription. BioEssays, 2017, 39, 1600184.	2.5	25

PETER N COCKERILL

#	Article	IF	CITATIONS
19	Integration of Kinase and Calcium Signaling at the Level of Chromatin Underlies Inducible Gene Activation in T Cells. Journal of Immunology, 2017, 199, 2652-2667.	0.8	51
20	Prognostic significance of high GFI1 expression in AML of normal karyotype and its association with a FLT3-ITD signature. Scientific Reports, 2017, 7, 11148.	3.3	16
21	T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation. Frontiers in Immunology, 2017, 8, 204.	4.8	25
22	Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Development (Cambridge), 2016, 143, 4324-4340.	2.5	43
23	Inducible chromatin priming is associated with the establishment of immunological memory in T cells. EMBO Journal, 2016, 35, 515-535.	7.8	92
24	Receptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible Elements. Yale Journal of Biology and Medicine, 2016, 89, 591-596.	0.2	4
25	Chromatin Structure Profiling Identifies Crucial Regulators of Tumor Maintenance. Trends in Cancer, 2015, 1, 157-160.	7.4	11
26	Wellington-bootstrap: differential DNase-seq footprinting identifies cell-type determining transcription factors. BMC Genomics, 2015, 16, 1000.	2.8	49
27	Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature. Cell Reports, 2015, 12, 821-836.	6.4	63
28	Aberrant Transcriptional Programming in Blood Cancers. , 2015, , 467-484.		0
29	Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal. Cell Reports, 2014, 8, 1974-1988.	6.4	106
30	Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4513-22.	7.1	53
31	The Epigenetic Regulatory Machinery. Epigenetics and Human Health, 2014, , 1-11.	0.2	0
32	Prior epigenetic priming of cytokine genes in naive T cells is required for their subsequent activation by inducible enhancers. Epigenetics and Chromatin, 2013, 6, .	3.9	0
33	Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Nucleic Acids Research, 2013, 41, e201-e201.	14.5	196
34	The Inducible Tissue-Specific Expression of the Human IL-3/GM-CSF Locus Is Controlled by a Complex Array of Developmentally Regulated Enhancers. Journal of Immunology, 2012, 189, 4459-4469.	0.8	9
35	Induction of differentiation and apoptosis in leukaemic cell lines by the novel benzamide family histone deacetylase 2 and 3 inhibitor MI-192. Leukemia Research, 2012, 36, 1304-1310.	0.8	42
36	Structure and function of active chromatin and DNase I hypersensitive sites. FEBS Journal, 2011, 278, 2182-2210.	4.7	110

PETER N COCKERILL

#	Article	IF	CITATIONS
37	Chromatin Mechanisms Regulating Gene Expression in Health and Disease. Advances in Experimental Medicine and Biology, 2011, 711, 12-25.	1.6	20
38	Transcriptional and epigenetic regulation of the GM-CSF promoter by RUNX1. Leukemia Research, 2010, 34, 1203-1213.	0.8	17
39	Transcription-dependent silencing of inducible convergent transgenes in transgenic mice. Epigenetics and Chromatin, 2010, 3, 3.	3.9	27
40	Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nature Medicine, 2010, 16, 571-579.	30.7	317
41	Runx1 binds as a dimeric complex to overlapping Runx1 sites within a palindromic element in the human GM-CSF enhancer. Nucleic Acids Research, 2010, 38, 6124-6134.	14.5	35
42	The Human IL-3/Granulocyte-Macrophage Colony-Stimulating Factor Locus Is Epigenetically Silent in Immature Thymocytes and Is Progressively Activated during T Cell Development. Journal of Immunology, 2010, 184, 3043-3054.	0.8	28
43	A Conserved Insulator That Recruits CTCF and Cohesin Exists between the Closely Related but Divergently Regulated Interleukin-3 and Granulocyte-Macrophage Colony-Stimulating Factor Genes. Molecular and Cellular Biology, 2009, 29, 1682-1693.	2.3	28
44	The LPS-Induced Transcriptional Upregulation of the Chicken Lysozyme Locus Involves CTCF Eviction and Noncoding RNA Transcription. Molecular Cell, 2008, 32, 129-139.	9.7	129
45	NFAT Is Well Placed to Direct Both Enhancer Looping and Domain-Wide Models of Enhancer Function. Science Signaling, 2008, 1, pe15.	3.6	13
46	The <i>Pu.1</i> Locus Is Differentially Regulated at the Level of Chromatin Structure and Noncoding Transcription by Alternate Mechanisms at Distinct Developmental Stages of Hematopoiesis. Molecular and Cellular Biology, 2007, 27, 7425-7438.	2.3	56
47	A Modular Enhancer Is Differentially Regulated by GATA and NFAT Elements That Direct Different Tissue-Specific Patterns of Nucleosome Positioning and Inducible Chromatin Remodeling. Molecular and Cellular Biology, 2007, 27, 2870-2885.	2.3	47
48	In Vivo Genomic Footprinting Using LM-PCR Methods. , 2006, 325, 285-314.		20
49	Role of a 5′-enhancer in the transcriptional regulation of the human endothelial cell protein C receptor gene. Blood, 2006, 108, 1251-1259.	1.4	21
50	Transcriptional Regulation of Human CD5: Important Role of Ets Transcription Factors in CD5 Expression in T Cells. Journal of Immunology, 2004, 172, 7519-7529.	0.8	22
51	Granulocyte-Macrophage Colony-Stimulating Factor Enhancer Activation Requires Cooperation between NFAT and AP-1 Elements and Is Associated with Extensive Nucleosome Reorganization. Molecular and Cellular Biology, 2004, 24, 7914-7930.	2.3	72
52	Mechanisms of Transcriptional Regulation of the Human IL-3/GM-CSF Locus by Inducible Tissue-Specific Promoters and Enhancers. Critical Reviews in Immunology, 2004, 24, 24.	0.5	24
53	Regulation of the human endothelial cell protein C receptor gene promoter by multiple Sp1 binding sites. Blood, 2003, 101, 4393-4401.	1.4	12
54	The Human IL-3 Locus Is Regulated Cooperatively by Two NFAT-Dependent Enhancers That Have Distinct Tissue-Specific Activities. Journal of Immunology, 2002, 169, 1876-1886.	0.8	41

PETER N COCKERILL

#	Article	IF	CITATIONS
55	Identification of DNasel Hypersensitive Sites Within Nuclei. , 2000, 130, 29-46.		35
56	Generation of an Improved Luciferase Reporter Gene Plasmid That Employs a Novel Mechanism for High-Copy Replication. Plasmid, 2000, 44, 173-182.	1.4	56
57	Reconstitution of T Cell-Specific Transcription Directed by Composite NFAT/Oct Elements. Journal of Immunology, 2000, 165, 5646-5655.	0.8	37
58	Nuclear factor of activated T cells contributes to the function of the CD28 response region of the granulocyte macrophage-colony stimulating factor promoter. International Immunology, 1999, 11, 1945-1956.	4.0	27
59	A T Cell–Specific Enhancer in the Interleukin-3 Locus Is Activated Cooperatively by Oct and NFAT Elements within a DNase l–Hypersensitive Site. Immunity, 1997, 6, 175-185.	14.3	77
60	Cytokines and allergy. Journal of Allergy and Clinical Immunology, 1994, 94, 1289-1293.	2.9	14
61	Isolation and characterization of the promoter region of the human intercellular adhesion molecule-1 gene. International Immunology, 1991, 3, 83-93.	4.0	43
62	Nuclear matriax attachment occurs in several regions of the IgH locus. Nucleic Acids Research, 1990, 18, 2643-2648.	14.5	71
63	Protein:DNA interactions at chromosomal loop attachment sites. Genome, 1989, 31, 503-509.	2.0	69
64	Two methods that facilitate autoradiography of small 32P-labeled DNA fragments following electrophoresis in agarose gels. Analytical Biochemistry, 1988, 168, 451-454.	2.4	3
65	Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Letters, 1986, 204, 5-7.	2.8	111
66	Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell, 1986, 44, 273-282.	28.9	948
67	Fractionation by high-performance liquid chromatography of the low-molecular-mass high-mobility-group (HMG) chromosomal proteins present in proliferating rat cells and an investigation of the HMG proteins present in virus transformed cells. FEBS Journal, 1985, 149, 47-51.	0.2	52
68	Comparison of the structures of the chromosomal high mobility group proteins HMG1 and HMG2 prepared under conditions of neutral and acidic pH. BBA - Proteins and Proteomics, 1983, 745, 70-81.	2.1	21
69	Demonstration of an S1-nuclease sensitive site near the human β-globin gene, and its protection by HMG 1 and 2. Biochemical and Biophysical Research Communications, 1983, 112, 547-554.	2.1	25
70	The nuclease sensitivity of active genes. Nucleic Acids Research, 1983, 11, 753-772.	14.5	61
71	Biochemical and histological changes in pulmonary fibrosis induced in rabbits with intratracheal bleomycin. European Journal of Clinical Investigation, 1981, 11, 441-448.	3.4	61
72	A simplified method for quantitation of the relative amounts of type I and type III collagen in small tissue samples. Analytical Biochemistry, 1981, 113, 301-312.	2.4	142

#	Article	IF	CITATIONS
73	RUNX1-ETO Orchestrates Dynamic Enhancer Promoter Communication in T(8;21) Acute Myeloid Leukaemia. SSRN Electronic Journal, 0, , .	0.4	0